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Augmented Index is a variant of a basic problem in communication complexity, the Index
function problem. In this variant, the player holding the index also receives a portion of the other
party’s input. More formally, one party, Alice, has an n-bit string x, and the other party, Bob, has
an integer k ∈ [n], the prefix x[1, k − 1] of x, and a bit b ∈ {0, 1}. Their goal is to compute the
function fn(x, (k, x[1, k − 1], b)) = xk ⊕ b, i.e., to determine whether b = xk or not. This problem
was studied in the one-way communication model as “serial encoding” [2, 24], and as “Augmented
Index” [9, 14] and “Mountain problem” [21] in later works.

Communication problems involving the Index function and its variants capture a number of
phenomena in the theory of computing, both classical and quantum, in addition to playing a
fundamental role in the area of communication complexity [19]. For instance, they have been used
to analyze data structures [22], the size of finite automata [3] and formulae [17], the length of locally
decodable codes [15], learnability of quantum states [1], and sketching complexity [4]. Recently,
phenomena in quantum information have been discovered via the Index function problem, e.g.,
information causality [27], a connection between non-locality and the uncertainty principle [26] and
quantum ignorance [29].

Imagine that the two remotely situated parties, Alice and Bob, wish to compute the Aug-
mented Index function by communicating with each other. Imagine further that they wish to
keep as much of their respective inputs hidden from the other party as possible. This is precisely
the kind of scenario that arises in the classic two millionaires’ problem, in which Alice and Bob try
to determine who is richer, without revealing more about their assets, or in Private Information
Retrieval, in which a stock broker would like to look up the availability of a particular stock, with-
out divulging which one it is. Intuitively, for any function that depends non-trivially on both sets
of inputs, the two parties would perforce reveal some information about their inputs when no re-
strictions are placed on their computational abilities. In this work we establish a trade-off between
the amount of (classical and) quantum information the two parties necessarily reveal about their
inputs in the process of the computing Augmented Index. A surprising feature of this trade-off is
that it holds even under a distribution on inputs on which the function value is known in advance.
In fact, this is the price paid by any protocol that works correctly on a “hard” distribution. We
show that in quantum protocols that compute Augmented Index correctly with constant error
on the uniform distribution, either Alice reveals Ω(n/t) information about her n-bit input x, or
Bob reveals Ω(1/t) information about his (logn)-bit input k, where t is the number of messages
in the protocol, even when the inputs are drawn from an “easy” distribution, the uniform distri-
bution over inputs which evaluate to 0. In more detail, we start by defining appropriate notions
of quantum information cost (QICA

λ(Π),QICB
λ(Π)) of a protocol Π for Augmented Index for the

two players Alice (A) and Bob (B) with respect to the distribution λ, and then show:

Theorem 1 In any two-party quantum communication protocol Π (with read-only behaviour on
inputs and no intermediate measurements) for the Augmented Index function fn that has t
messages and makes constant error at most ε ∈ [0, 1/4) on the uniform distribution µ over inputs,
either QICA

µ0(Π) ∈ Ω(n/t) or QICB
µ0(Π) ∈ Ω(1/t), where µ0 is the uniform distribution over f−1

n (0).

Klauck [16] studied privacy in communication protocols in the setting of “honest but curious”
players. The notion of privacy he considers is weaker than that in this work, as the privacy loss
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is measured with respect to a (hard) distribution over inputs (rather than a superposition over
inputs). A notion of information cost for Index was studied previously by Jain, Radhakrishnan,
and Sen [12] in the context of privacy in communication. This notion differs from the one we
study in two crucial respects. First, it is defined in terms of the hard distribution for the problem
(uniform over all inputs). Second, the hard distribution is a product distribution. The techniques
they develop seem not to be directly relevant to the problem at hand, as we deal with an easy
and non-product distribution. Among known results, perhaps the one closest to Theorem 1 is a
lower bound on information loss in the computation of the two-bit AND function due to Jain,
Radhakrishnan, and Sen [11]. Information loss for AND is also defined in terms of an “easy”
distribution, and analyzed for quantum protocols that are guaranteed to work in the worst case.
We elaborate on another connection with this result below.

We devise a novel method for analyzing the information cost of fn to arrive at Theorem 1.
The proof we present shows how the conceptually simple and familiar ideas such as average en-
coding and local transitions may be brought to bear on Augmented Index. These primitives
were originally developed to prove properties of quantum protocols beyond the reach of previously
known techniques [18], and have since then been specialized and applied to classical protocols with
tremendous success. In fact, we first prove an analogue of Theorem 1 for classical protocols, which
gives a stronger (optimal up to constant factors) trade-off for classical information cost. Classical
protocols that produce the correct output with constant probability more than 3/4 with respect to
the distribution µ are such that either Alice reveals Ω(n) information about x or Bob reveals Ω(1)
information about k, even under the distribution µ0. The full version of this article compares
the classical result to previous work by Magniez, Mathieu, and Nayak [21], and independent and
concurrent work by Chakrabarti, Cormode, Kondapally, and McGregor [7] in detail. However, we
emphasize that the approaches taken in these two works do not directly generalize to quantum pro-
tocols. They are based on analyzing the input distribution conditioned on the message transcript;
no suitable quantum analogue of this technique is known.

The quantum information cost trade-off involves a number of subtleties. Unlike the classical
information cost, which has been studied extensively (see, e.g., [8, 28, 5, 13]), it is not a priori
clear what the appropriate definition of quantum information cost is. For one, the no-cloning
principle [25] prevents the two parties from keeping a copy of the messages so there is no obvious
notion of the history of the protocol. A notion of a transcript that encapsulates the history of a
quantum protocol is instead the sequence of the joint states after each message exchange. Second, we
consider the information contained about a superposition of inputs corresponding to the distribution
of interest. This information is in general more than the information contained about a distribution
over inputs, and the resulting notion seems to be necessary for the proof of the information cost
trade-off we present. A third subtlety arises from the manner in which the input is distributed
among the two parties. Alice and Bob share x[1, k] when the inputs are restricted to f−1

n (0).
Therefore when the input registers are initialized with the corresponding superpositions, the two
parties already begin with some information about each other’s input. Unlike in the classical case,
this enables Alice to get information about the index k. The effect of sharing the prefix is identical
to that of measuring the first k qubits of Alice’s input superposition in the computational basis.
This results in states of varying amount of von Neumann entropy for different indices, which leaks
information about the index k. To quantify the information leaked by the protocol, we therefore
imagine that there is a single quantum register that carries the superposition corresponding to x,
and that Bob has read-only access to the relevant portion of this register. The information cost is
then measured with respect to this register.

The intuition behind the lower bound on quantum information cost is as follows. Starting from
an input pair on which the function evaluates to 0, if the information cost of any one party is
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low and we carefully change her input, the other party’s share of the state does not change much.
Assume for simplicity that Alice produces the output of the protocol. We show that even when
we simultaneously change the inputs with both parties simultaneously, resulting in a 1-input of the
function, the perturbation to Alice’s final state is also correspondingly small. This implies that the
two information costs cannot be small simultaneously. The effect of simultaneously switching the
two parties’ inputs is captured in the classical case by the Cut-and-Paste lemma, which does not
apply to quantum protocols. In the final piece of the argument above we instead appeal to the Local
Transition Theorem and a hybrid argument. These are applied on a message-by-message basis, à
la Jain et al. [11], and lead to a dependence of the information cost trade-off on the number of
messages in the protocol. We are not aware of quantum protocols that beat the classical information
bounds. However the dependence of the trade-off in Theorem 1 on the number of messages t may
be inherent as is the case with Set Disjointness [11].

The classical version of this result, a trade-off for classical information cost with either Ω(n)
information revealed by Alice or Ω(1) by Bob, has implications for the space required by streaming
algorithms. It implies that streaming algorithms for certain context free properties (captured by the
language Dyck(2)) need space Ω(

√
n/T ) on inputs of length n, when allowed T unidirectional passes

(sequential scans) over the input. In the context of classical computation, streaming algorithms
were motivated by the growing need to process massive input data, which cannot fit entirely in
computer memory [23]. Random access to such input is prohibitive, so ideally we would like to
process it with a single sequential scan. Furthermore, during the computation, we are compelled
to use space that is much smaller than the length of the input. Thus streaming algorithms scan
the input sequentially only once (or a few times), while processing each input symbol quickly using
a small amount of space. The need for algorithms of a similar simple form becomes more acute
in the context of quantum computation. Streaming algorithms with quantum memory are the
algorithms of choice in the absence of of prototypes with a large enough number of qubits and with
long enough coherence times. Indeed, this has fuelled the study of quantum finite automata, which
are precisely streaming algorithms that use constant space and time, and later works on quantum
streaming algorithms [20, 10, 6].

The connection between the Augmented Index function fn and streaming algorithms for
Dyck(2) was charted by Magniez et al. [21]. They map a streaming algorithm for Dyck(2) that
uses space s to a multi-party communication protocol in which the messages are each of the same
length s, and then bound s from below for protocols resulting from one-pass algorithms. The
communication bound is derived using the information cost approach, which reduces the task
to bounding from below the information cost of Augmented Index with respect to the easy
distribution µ0. The proof of the connection between streaming algorithms and protocols for
Augmented Index does not extend immediately to the quantum case due to the stronger notion
of information cost we define. Theorem 1 would however have similar consequences, if a certain
information inequality holds. Consider unitary operations Ui,x,k, Vi,x on m qubits, where i ∈ [`], k ∈
[n], and x ∈ {0, 1}n, where Ui,x,k depends on x[1, k] and i, and Vi,x depends on x and i. Let ~K be

uniformly distributed over [n]`, ~X be initialized to a uniform superposition over {0, 1}n`, and M
be a quantum state over m qubits, obtained by successively applying Ui,Xi,KiVi,Xi to |0̄〉, controlled

by the ith string Xi in ~X, the ith index Ki in ~K for each i ∈ [`]. Under the conjecture that I( ~K :
M ~X) ≤ m, we obtain a space lower bound for quantum streaming algorithms analogous to the
classical one. We leave this potential implication for quantum streaming algorithms to future work.
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