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In this talk, we seek to better understand the structure of local operations and classical commu-

nication (LOCC) and its relationship to separable operations (SEP). To this end, we compare the

abilities of LOCC and SEP for distilling EPR entanglement from one copy of an N -qubit W-class

state (i.e. that of the form
√
x0|00...0〉+√x1|10...0〉+ ...+

√
xn|00...1〉). In terms of transformation

success probability, we are able to quantify a gap as large as 37% between the two classes. Our work

involves constructing new analytic entanglement monotones for W-class states which can increase on

average by separable operations. Additionally, we are able to show that the set of LOCC operations,

considered as a subset of the most general quantum measurements, is not closed.
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In the “distant lab” setting of quantum information

processing, entanglement is shared among spatially sep-

arated parties, and its manipulation is implemented

through local quantum operations coordinated by clas-

sical communication (LOCC). However, despite its fairly

intuitive physical description, the mathematical struc-

ture of LOCC operations is quite complex with many

important questions still unanswered. As a result, the

simpler and more general class of separable operations

(SEP) is used as an approximation for LOCC. This class

consists of all completely positive (CP) maps allowing

for a Kraus representation with operators of the form

Πλ = M
(1)
λ ⊗M (2)

λ ⊗ ...⊗M (N)
λ .

Nevertheless, it is well-known that LOCC ( SEP

where the inclusion is proper [1]. A dramatic example of

this latter fact is the phenomenon of “non-locality with-

out entanglement,” a term originally used to describe sets

of orthogonal product states indistinguishable by LOCC

[1]. Beyond the relationship LOCC ( SEP, very lit-

tle is known about the precise difference between these

two. For instance, how much more powerful is SEP than

LOCC? Do there exist functions which behave monoton-

ically under LOCC but can be increased on average by

SEP?

In this talk, we provide the first quantitative analysis of

the difference between SEP and LOCC. Our measure for

comparison is success probability in certain multiqubit

entanglement transformations. Specifically, we turn to

the task of random distilling an EPR pair from one copy

of a multipartite state, as first initiated by Fortescue and

Lo [2, 3]. Letting |ϕ〉1...N denote a general N -qubit state

and |Φ(ij)〉 =
√

1/2 (|00〉+ |11〉) denote an EPR pair

shared between parties i and j, a random EPR distil-

lation is the multi-outcome transformation

|ϕ〉1...N → {|Φ(ij)〉 with probability pij}i<j (1)

and
∑N
i<j pij ≤ 1. We consider how the abilities of LOCC

and SEP differ for this transformation.

Our investigation focuses on N -qubit random distilla-

tions when the initial state belongs to the W Class of

states, thus taking the form

|~x〉 =
√
x0|00...0〉+

√
x1|10...0〉+

√
x2|01...0〉+

√
xN |00...1〉

up to some local unitary (LU) operation. The primary

reason for focusing on W-class states is that their entan-

glement properties are easy to analyze. Specifically, each

W-class state can be represented by an N -component

vector ~x = (x1, ..., xN ) where the xi correspond to the

components in |~x〉, and it is not difficult to monitor how

these components change under a local measurement [4].

However, even for W-class states, it is difficult to de-

cide LOCC feasibility of a general random distillation

specified by Eq. (1). In our talk, we focus on two par-

ticular types of transformation: a combing-type and a

complete-type (see Fig. 1). A combing-type transforma-

tion is the one-shot analog of “entanglement combing”

studied by Yang and Eisert [5] in which one particu-

lar party is selected to be a shareholder of the bipar-

tite entanglement for each of the possible outcomes. In a
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FIG. 1: A “combing-type” versus “complete-type” distilla-

tion for five parties. Each of the parties are assigned a node,

and nodes vi and vj are connected if and only if it is desired

for parties i and j to be EPR entangled with some nonzero

probability.

complete-type transformation, the transformation is con-

sidered a success if any two parties ends up sharing an

EPR state, regardless of who they are.

Solution to LOCC Combing-Type and

Complete-Type Transformations

For an N -party W-class state ~x = (x1, x2, ..., xN ), set

{n1, n2, ..., nN} = {1, 2, ..., N} such that xn1 ≥ xn2 ≥
... ≥ xnN

and consider the functions:

η(~x) = xn1 −
(

1

xn1

)N−2 N∏
i=2

(xn1 − xni)

κ(~x) =

N∑
i=2

xni + η(~x). (2)

By decomposing each local measurement into a sequence

of weak measurements, we prove the following theorem.

Theorem 1.

(I) η is non-increasing on average for any single local

measurement in which n1 is the same value for the

initial and all possible final states,

(II) κ is an entanglement monotone. It is strictly de-

creasing on average for any non-trivial measure-

ment by party n1.

The functions η and κ provide tight upper bounds to

combing-type and complete-type transformations.

Theorem 2. For an N -party W-state ~x =

(x1, x2, ..., xN ), let Ptot be the optimal total proba-

bility of obtaining an EPR pair by LOCC (i.e. a

complete-type transformation), and Pk the optimal total

probability of party k becoming EPR entangled (i.e. a

combing-type transformation w.r.t. party k). Then

(I) Ptot < κ(~x), and

(II) Pk ≤

2xk if xk < xl for some l

2η(~x) if xk ≥ xl for all l.

When x0 = 0, the upper bound in (I) can be approached

arbitrarily close while in (II) it can be achieved exactly.

General Random Distillation by Separable

Operations

We are show that for W-class states, when given

some collection of pij such that
∑N
i<j pij ≤ 1,

deciding whether transformation (1) is possible by

SEP can be solved using semi-definite program-

ming. For the special case when the initial state is

|WN 〉 =
√

1/N (|10...0〉+ |01...0〉+ ...+ |00...1〉), the so-

lution takes a relatively simple form.

Theorem 3. For |ϕ1...N 〉 = |WN 〉, let E be the set of

(i, j) such that pij > 0. Then transformation (1) is pos-

sible by separable operations if and only if

N2

4

∑
(i,j)∈E

p2ij ≤ 1,
N

2

∑
(i,j)∈Ek

pij ≤ 1, 1 ≤ k ≤ N.

LOCC vs. SEP Comparison

Theorems 2 and 3 allow us to make a direct comparison

between the powers of LOCC and SEP for implementing

transformation (1). For example, with a general three-

qubit W-class state
√
x1|100〉+√x2|010〉+√x3|001〉 with

1/2 ≥ x1 ≥ x2 ≥ x3 and x0 = 0, separable operations can

randomly distill with probability 1. What’s particularly

interesting is that such perfect distillation in the range

1/2 ≥ x1 ≥ x2 ≥ x3 is precisely the same as if Bob

and Charlie were allowed to work together in distilling

entanglement across the bipartition A:BC. Thus, we see

that SEP saturates the bipartite bound while LOCC is

bounded by κ(~x). As an example, we compare κ-type

distillation rates on the one parameter family of states
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FIG. 2: LOCC vs. SEP for the maximum probability of

obtaining an EPR pair between any two parties as a function

of s when the initial state is
√
s|100〉+

√
1−s
2

(|010〉+ |001〉).

The LOCC probability is 2(1 − s) − (1−s)2

4s
. A gap of 12.5%

exists between SEP and LOCC.

|ψs〉 =
√
s|100〉 +

√
1−s
2 (|010〉+ |001〉) for 1

3 ≤ s ≤ 1
2 .

The LOCC optimal probability is given by

κ(ψs) = 2(1− s)− (1− s)2

4s
. (3)

The comparison of SEP versus LOCC is depicted in Fig.

2.

Next, we compare the probabilities for a combing-

type transformation on states of the form |ψ1/2〉1...N =√
1
2 |10....0〉 +

√
1

2(1−N) (|01...0〉+ ...+ |00...1〉). By

LOCC, the optimal probability is

2η(ψ1/2) = 1− (1− 1

N − 1
)N−1 −→ 1− e−1 (4)

where we have taken the limit for large N . However,

separable operations can achieve the transformation with

unit probability. We plot this separation between LOCC

and SEP as a function of N in Fig. 3.

LOCC is Not a Closed Set of Operations

An immediate consequence of our monotones pertains to

the question of whether the set of LOCC operations is

topologically closed. Intuitively, LOCC closure, denoted

by LOCC, consists of all LOCC maps and their sequential

limits. Thus, to show that LOCC is not closed, it is

sufficient to construct a sequence (indexed by i) of LOCC

transformations

|ϕ〉 → {pij , |ϕij〉}j=1...m for i = 1, 2, ...

such that the transformation

|ϕ〉 → {pj , |ϕj〉}j=1...m

FIG. 3: LOCC vs. SEP for the maximum probability of

party 1 become EPR entangled as a function of N when initial

state is
√

1
2
|10....0〉 +

√
1

2(1−N)
(|01...0〉+ ... + |00...1〉). The

LOCC probability is 1− (1− 1
N−1

)N−1. A gap of 37% exists

between SEP and LOCC.

is not implementable by LOCC, where pij → pj and

|ϕij〉 → |ϕj〉.

The Fortescue-Lo Protocol given in Ref. [2] describes

a sequence of complete-type distillations Tn on |W3〉 that

succeeds with total probability pAB + pAC + pBC >

1− 1/n. Thus the limit transformation T succeeds with

probability 1. However, from our entanglement mono-

tone κ, it is easy to see that a deterministic random dis-

tillation of |W3〉 is impossible by LOCC. This is because

at some point in the protocol party n1 must perform a

non-trivial measurement, and by Theorem 1 (II) this will

cause κ to be strictly less than 1. Hence, a deterministic

transformation is not possible and therefore LOCC is not

a closed set of operations.
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