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We consider the computational complexity of Hamiltonians which are sums of commuting terms
acting on plaquettes in a square lattice of qubits, and we show that deciding whether the ground
state minimizes the energy of each local term individually is in the complexity class NP. That is,
if the ground states has this property, this can be proven using a classical certificate which can be
efficiently verified on a classical computer. Different to previous results on commuting Hamiltonians,
our certificate proves the existence of such a state without giving instructions on how to prepare it.
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Background.—The study of Hamiltonian complex-
ity, which in essence captures the difficulty of determining
the ground state energy of a local Hamiltonian, has at-
tracted considerable attention in the last years. For clas-
sical systems, the problem of deciding whether there ex-
ists a state with energy below a certain threshold is NP–
hard: Clearly, the ground state can be described classi-
cally, and its energy can be computed efficiently; and NP–
hardness has been proven e.g. for Ising spin glasses [1].
For quantum Hamiltonians, the best one can say a priori
is that it is possible for a prover to provide the ground
state as a quantum state, and that its energy can be effi-
ciently estimated by a quantum computer to polynomial
accuracy, putting the problem in the class QMA; and it
was indeed proven by Kitaev that the general problem is
hard for the class QMA [2]. This result has later been
generalized to various setups, including two-dimensional
lattices of qubits [3] and (in strong contrast to classical
Hamiltonians) one-dimensional chains [4].
It is an interesting question where the additional com-

plexity of quantum spin systems as compared to classical
systems arises. To this end, one can study restricted
classes of Hamiltonians which are “more classical” than
general quantum Hamiltonians. One such class is formed
by commuting Hamiltonians, that is, Hamiltonians which
can be written as a sum of mutually commuting few-body
terms. For those systems, all terms can be simultane-
ously diagonalized, just as for classical systems; however,
the corresponding eigenbasis can be highly entangled,
making it unclear whether a useful classical description
of the ground state can be provided. In fact, commut-
ing Hamiltonians encompass e.g. models with topologi-
cal order, such as Kitaev’s toric code [5] or Levin and
Wen’s string net models [6]. Commuting Hamiltonians
are also of interest from the point of view of condensed
matter physics, since the fixed points of renormalization
flows in gapped phases are expected to be commuting
Hamiltonians, and thus understanding their structure
should give insight into the structure of gapped quan-
tum phases. Finally, understanding the complexity of
commuting Hamiltonians might form a step towards a
quantum PCP theorem, which would assess how the dif-
ficulty of estimating the ground state energy is related

to the desired accuracy which is integer for commuting
projectors.

The problem we will consider is commuting hamil-
tonian: Given a Hamiltonian with commuting terms,
does there exist a state which minimizes the energy of
each term in the Hamiltonian individually? For lattices
in two and higher dimensions, commuting hamilto-
nian is an NP–hard problem, as it encompasses NP–hard
classical models [1]. On the other hand, it is not clear
whether the general commuting hamiltonian problem
is inside NP, since it is not clear in general how to provide
an efficiently checkable description of the ground state.
For two-local (i.e., two-body) Hamiltonians, Bravyi and
Vyalyi [7] have shown that the problem is in NP (their re-
sult also implies that one-dimensional commuting Hamil-
tonians are efficiently solvable); subsequently, Aharonov
and Eldar [8] have proven containment in NP for Hamil-
tonians with three-body interactions both for qubits on
arbitrary graphs, and qutrits on nearly-Euclidean inter-
action graphs. In all of these cases, the classical certifi-
cates do not only prove the existence of a such a ground
state, but can in fact be used to construct constant depth
quantum circuits which prepare the ground state. This
implies that the corresponding Hamiltonians – includ-
ing qutrits with three-body interactions – cannot exhibit
topological order [8, 9]. On the other hand, Kitaev’s toric
code, which is the ground state of a commuting Hamil-
tonian with four-body interactions of qubits, does have
topological order, and thus, we cannot expect any ap-
proach which yields a low-depth circuit to work beyond
three qutrits.

In this work, we study the commuting hamiltonian
problem on a square lattice of qubits with plaquette-wise
interactions, and prove that it is in NP. That is, we con-
sider a square lattice of qubits, with a Hamiltonian with
mutually commuting terms acting on the four qubits ad-
jacent to each plaquette, and show that the problem of
deciding whether its ground state minimizes the energy
of each local term in the Hamiltonian is in NP: i.e., in
case the ground state has this property, a classical certifi-
cate exists which can be checked efficiently by a quantum
computer. Our approach differs considerably from the
aforementioned approaches in that the certificate cannot
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be used to devise a quantum circuit for preparing the
ground state, and is thus also applicable to systems with
topological order.
The setup.—We consider a 2D square lattice with

spins on the vertices. The Hamiltonian H =
∑

p hp,
[hp, hq] = 0, consists of plaquette terms hp which act on
the four spins adjacent to the plaquette p. We are inter-
ested in the complexity of the following problem, called
commuting hamiltonian: Is there an eigenstate |ψ〉 of
H which minimizes the energies for all hp individually,
i.e., are the ground states of H also ground states of each
hp? As we will show, in the case of qubits the existence of
such a state can be proven within NP, i.e., there is a clas-
sical certificate which proves the existence of such a |ψ〉,
and which can be checked efficiently classically. (Note
that NP–hardness follows from the NP–hardness results
for Ising spin glasses.)
In the following, we will use the following reformu-

lation of commuting hamiltonian: Define Πp as the
projector onto the ground state subspace of hp; again,
[Πp,Πq] = 0. Then, ΠGS =

∏
p Πp is the projector onto

the subspace spanned by the states which are ground
states of all hp. commuting hamiltonian asks whether
such states exist, i.e., whether ΠGS 6= 0.
The proof that commuting hamiltonian is in NP

consists of two steps: First, we show that the Hamilto-
nian can be split into two layers which both can be solved
in NP, and the problem reduces to computing the over-
lap of the two solutions, and second, we show that this
overlap can indeed be computed efficiently, which puts
the overall problem in NP.
Step I: Splitting into two layers.—We start by

coloring the plaquettes of the square lattice black and
white in a checkerboard pattern, and denote the set of
black and white plaquettes by PB and PW , respectively.
Let

ΠB =
∏

p∈PB

Πp and ΠW =
∏

p∈PW

Πp ;

then, commuting hamiltonian corresponds to deter-
mining whether ΠBΠW 6= 0, or equivalently

tr[ΠBΠW ] 6= 0 . (1)

To prove commuting hamiltonian is contained in NP,
we therefore need to show that a classical certificate for
the validity of (1) can be provided.
A helpful example to keep in mind is Kitaev’s toric

code [5]: There, Πp = 1
2 (11 + Z⊗4) for p ∈ PB , and

Πp = 1
2 (11 +X⊗4) for p ∈ PW .

Let us next study the structure of ΠB . Using C∗-
algebraic techniques introduced to the problem in [7], one
can show that there exists a decomposition of the Hilbert
space at vertex v into subspaces

∑
αv
πv
αv

= 11, with the
πv
αv

projectors, such that ΠB projected onto any “slice”
~α = (αv)v∈V (with projector ⊗vπ

v
αv
) factorizes, i.e., ΠB

can be written as

ΠB =
⊕
~α

⊗
p∈PB

Π~α
p ≡

∑
~α

⊗
p∈PB

Π~α
p . (2)

Here, the projectors Π~α
p are obtained by restricing Πp

to slice ~α. each Π~α
p acts only on plaquette p, but the

Π~α
p for different plaquettes now factorize; note that the

the expression on the r.h.s. should be understood with
respect to the natural embedding of the “slices” into the
full Hilbert space.

The same decomposition for the white sublattice gives
a different decomposition into subspaces π̄v

βv
at each ver-

tex, which induce a factorizing decomposition

ΠW =
∑
~β

⊗
p∈PW

Π
~β
p . (3)

E.g., for Kitaev’s toric code, the πv
αv

are projectors onto
the Z eigenstates, and the π̄v

βv
onto the X eigenstates.

Using Eqs. (2) and (3), we can rewrite the commuting
hamiltonian problem, Eq. (1), as

0 6=
∑
~α,~β

tr

[ (⊗
p∈PB

Π~α
p

)(⊗
p∈PW

Π
~β
p

)]
︸ ︷︷ ︸

=:Ω(~α,~β)

. (4)

Since each of the traces is non-negative, we can ask the
prover to provide us with ~α and ~β such that Ω(~α, ~β) 6= 0

– clearly, such ~α and ~β exist only for yes-instances. In
order to prove containment in NP, it remains to show
that the overlap Ω(~α, ~β) can be computed efficiently (or
at least in NP).

For Kitaev’s toric code, e.g., we could choose ~α = ~β =
(0, . . . , 0): This yields

Ω(~α, ~β) = tr
[
(|0〉〈0|)⊗N (|+〉〈+|)⊗N

]
= 2−N 6= 0 ,

which is efficiently computable and proves the existence
of a zero-energy ground state; note that this certificate
does not carry any information how to prepare the state.

Step II: Computing the overlap.—The preceding
discussion holds for any local Hilbert space dimension. In
the following, we will restrict to the case of qubits to show
how to compute the overlap Ω(~α, ~β). We start by tracing

over all sites on which Π~α
p or Π

~β
p act on a one-dimensional

subspace only, i.e., the corresponding projection πv
αv

or
π̄v
βv

is one-dimensional. Tracing out those qubits gives

new states ρp for each plaquette (we omit ~α and ~β from
now on), moreover, all traced out qubits are now missing
from the lattice. Thus, we can reexpress

Ω(~α, ~β) = T1D Θ

where T1D is the prefactor obtained from tracing out the
aforementioned qubits, and Θ is the overlap of the states
ρp supported on the white and on the black plaquettes; by
construction, the ρp are now such that for two diagonally
adjacent plaquettes, only one ρp acts on the shared qubit.

Clearly, if T1D = 0, we can reject the proof. It remains
to show that we can check efficiently whether Θ 6= 0.
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FIG. 1. Computing the overlap Θ for qubits. The diamonds
at the vertices of the square lattice denote the qubits. The
connected black dots mark qubits on which the ρp act non-
trivially on plaquette p. If the ρp of two plaquettes act non-
trivially on the same qubit, we say that they “overlap”; note
that this cannot happen for diagonally adjacent plaquettes.
Overlapping ρp’s form structures which we need to contract to
compute the overlap Θ. a) Patterns forming one-dimensional
chains can be contracted efficiently, as the size of the bound-
ary stays constant for any contiguous region. b) Branching
structures do in general not allow for efficient contraction.
However, we prove that such structures cannot occur.

The situation encountered in computing the overlap Θ
is depicted in Fig. 1. Here, the dots in each plaquette de-
note the vertices on which ρp acts non-trivially (the lines
just connect the vertices involved in ρp). If the ρp on
adjacent plaquettes act non-trivially on the same qubit
(we will say they “overlap”), they form connected struc-
tures which we need to contract in order to evaluate Θ.
For one-dimensional structures as the one on in Fig. 1a,
this contraction can be carried out efficiently: One starts
from one plaquette and proceeds along one direction of
the one-dimensional chain, always tracing out the degrees
of freedom on the inside. This way, at every point in the
computation only the state at the boundary (which has
fixed size) needs to be stored, and thus, the contraction
can be carried out efficiently. On the other hand, branch-
ing structures like the one in Fig. 1b can in general not
be contracted efficiently, since the size of the boundary
is a priori not bounded.
However, as we can show, the structures formed by

the ρp in Θ will always be one-dimensional, and thus Θ
can be computed efficiently. To this end, we consider the
state ρC on a plaquette C (the “central” plaquette), and
show that it can overlap non-trivially with the states ρp
of at most two of the adjacent plaquettes, thus ruling
out branching structures as the one in Fig. 1b. The first
important ingredient for the proof is that in each layer,
at most one plaquette term ρp can act non-trivially on
any given vertex; in the graphical notation of Fig. 1, we
highlight this fact by placing a cross opposite of any dot:

(5)

This in particular implies that ρC can at most overlap
non-trivially with the four horizontally and vertically ad-
jacent plaquettes from the other layer, but not with di-

agonally adjacent plaquettes.
As the second ingredient, we prove the following im-

plication:

=⇒ (6)

This is, if in the configuration on the l.h.s., ρL acts non-
trivially on qubit 1, then ρT has to act trivially on both
qubits 1 and 2, and thus cannot overlap with ρC . (Proof
sketch: Since ρT cannot act on qubit 1, the corresponding

Π
~β
T has to commute with Π~α

C on qubit 2 only; but since
ρC acts non-trivially on qubit 2, ρT has to act trivially
on it.) Using Eq. (6), we then show that the structures in
the overlap Θ are all one-dimensional, since every state
ρC on a “central” plaquette can only overlap with the ρp
on at most two adjacent plaquettes.

Together, this shows that the overlap Θ can be com-
puted efficiently, which in turn implies that for given ~α
and ~β, Ω(~α, ~β) can be computed efficiently, and thus, the
commuting Hamiltonian problem on a square lattice of
qubits with plaquette interactions is in NP.

Summary.—We have proven that the commuting
hamiltonian problem on a square lattice of qubits with
plaquette-wise interaction is NP–complete, i.e., there ex-
ists an efficiently checkable classical certificate proving
that the ground state of the system minimizes each lo-
cal term. The idea of the proof is to split the system
into two layers, and to argue that the existence of a state
minimizing all local terms is equivalent to the existence
of a pair of ground states for the two layers with non-zero
overlap. The ground state subspace of each layer could be
described efficiently, using the methods introduced in [7].
Finally, we showed that the overlap of ground states of
two layers can be computed efficiently as it forms one-
dimensional structures. A somewhat surprising feature
of our approach is that while it certifies the existence of
a ground state, it cannot (to our knowledge) be used to
devise a way how to prepare the ground state; in fact,
due to the possibility of having topological order in such
systems, any circuit preparing their ground states would
need to have at least logarithmic depth, or linear depth
if it was local [9].

Our method does, in principle, also apply beyond
qubits, as long as there exists a way to compute Ω(~α, ~β)
in NP, i.e., with additional information provided by the
prover. In particular, this applies to the case where the
decomposition in the direct sum gives one-dimensional
spaces, such as in Kitaev’s toric code or quantum double
models; as well as to cases where the ρp are separable
states. Our idea also applies to any other graph which
can be split into two layers in such a way that the C∗–
technique of [7] can be applied to each of them.
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