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Abstract

This paper presents an efficient parallel algorithm for a new class of min-max problems based on the matrix mul-
tiplicative weight (MMW) update method. Our algorithm can be used to find near-optimal strategies for competitive
two-player classical or quantum games in which a referee exchanges any number of messages with one player fol-
lowed by any number of additional messages with the other. This algorithm considerably extends the class of games
which admit parallel solutions and demonstrates for the first time the existence of a parallel algorithm for any game
(classical or quantum) in which one player reacts adaptively to the other.

As a direct consequence, we prove that several competing-provers complexity classes collapse to PSPACE such
as QRG(2), SQG and two new classes called DIP and DQIP. A special case of our result is a parallel approxi-
mation scheme for a new class of semidefinite programs whose feasible region consists of n-tuples of semidefinite
matrices that satisfy a ”transcript-like” consistency condition. Applied to this special case, our algorithm yields a
direct polynomial-space simulation of multi-message quantum interactive proofs resulting in a first-principles proof
of QIP = PSPACE. It is noteworthy that our algorithm establishes a new way, called the min-max approach, to
solve SDPs in contrast to the primal-dual approach to SDPs used in the original proof of QIP = PSPACE.

Competitive multi-turn two-player (say, Alice and Bob) games are often studied in the classical game theory either
from the aspect of computing the game values or from the aspect of the complexity classes induced by those game
models. For succinct games, exponential-time algorithm exists for finding the exact value [KM92, KMvS94] and
it is also EXP-hard to approximate the game value [FIKU08, FKS95]. The situation is much different for shorter
games, where succinct two-turn games admit polynomial-space approximation scheme and are also PSPACE-hard to
approximate [FK97]. Approximating one-turn games is known to be SP

2 -complete [FIKU08].
For each competitive game model, one can analogously define the corresponding competing provers interactive

proofs (also called refereed games), where players become competing provers who are trying to convince some ran-
domized polynomial-time verifier to either accept or reject on some input x. Let RG(k) denote the complexity class
of problems that admit classical refereed games of k-turns and RG be short for RG(poly). Thus the above algorithmic
results imply RG = EXP and RG(2) = PSPACE.

Those game settings naturally extend to quantum case where provers and referees are allowed to exchange and
process quantum information. It is known that the class of problems that admit quantum refereed games, denoted by
QRG, coincide with its classical counterpart RG and henceforth EXP [GW07]. Also there exists a polynomial-space
approximation scheme for quantum one-turn refereed games [JW09]. However, much more remains unknown about
quantum refereed games of small number of turns.

In this paper, we consider the following class of competitive two-player refereed games, either classical or quan-
tum, that subsumes all the quantum refereed games of small number of turns studied so far [Gut05, GW05, GW07].

(i) The referee exchanges several messages only with Alice.

(ii) After processing this interaction with Alice, the referee exchanges several additional messages only with Bob.
After further processing, the referee declares a winner.
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Due to the similarity with the oft-studied interactive proof model of computation, we denote games of this form
by double interactive proofs: the referee in such a game executes a standard interactive proof with Alice followed
by a second interactive proof with Bob. Ordinary interactive proofs are thus special cases when referee completely
ignores Bob. One can also define the corresponding complexity classes associated with classical and quantum double
interactive proofs, which are denoted by DIP and DQIP respectively.

Our Results

The main contribution of this paper is an efficient parallel algorithm for a new class of min-max problems as-
sociated with the classical and quantum double interactive proofs. If the referee is specified succinctly by cir-
cuits then our parallel algorithm can be used to find near-optimal strategies in polynomial space (via the relation
NC(poly) = PSPACE [Bor77]). This algorithm is optimal in that it is PSPACE-hard even to distinguish games that
Alice can win with near certainty from games that Bob can win with near certainty, even in the special case of two-turn
games [FK97] where the referee exchanges only two messages synchronously with each player.

Prior to the present work polynomial-space algorithms were known only for two-turn classical games [FK97],
one-turn quantum refereed game [JW09], and for quantum interactive proofs [JJUW10, Wu10a]. Our result unifies
and subsumes both of these algorithms. It also demonstrates for the first time the existence of a parallel algorithm for
two-turn quantum games and for any game (classical or quantum) in which one player reacts adaptively to the other.

When applied to complexity theory, our result implies the collapse to PSPACE of the newly defined double
interactive proofs DQIP,DIP. A special case of our result yields the equality

SQG = QRG(2) = PSPACE,

thus solving the open problems of Ref. [GW05, JJUW10].
Our result also illustrates a difference in the role of public randomness between single-prover interactive proofs and

competing-prover interactive proofs. Any classical single prover interactive proof can be simulated by another public
coin interactive proof ( known as Arthur-Merlin games) where the verifier only sends uniformly random bits to the
prover and [GS89]. Extending the notion of public coin interaction to refereed games, it is easy to see that an arbitrary
multi-turn public-coin refereed game can be simulated by a double interactive proof. Therefore one has the public-coin
version of RG is a subset of DIP, which equals PSPACE. Thus, by contrast to the single-prover case where we have
public-coin-IP = IP, in the competing-prover case we have public-coin-RG 6= RG unless PSPACE = EXP.

As a special case our algorithm yields a direct polynomial-space simulation of multi-message quantum interactive
proofs, resulting in a first-principles proof of QIP = PSPACE. By contrast, all other known proofs [JJUW10, Wu10a]
were based on the simplified yet equivalent model of quantum interactive proofs [KW00, MW05].

Our main result is achieved through the following technical steps. Consider the feasible region A defined below.

A = {(X1, X2, · · · , Xn) : ∀i, Xi � 0 and TrC1(X1) = Q, TrCi
(Xi) = TrCi

(Vi−1Xi−1V
∗
i−1) for i = 2, · · · , n}

where TrC1 , . . . ,TrCn
are partial trace maps and V1, · · · , Vn−1 are unitary operators. Note that such set A corresponds

to Kitaev’s transcript representation of quantum interactions. Our first step can be stated in full generality as follows

Theorem 1 (Informal). Let P denote some convex compact set. For any appropriately bounded Q, P, there exists an
efficient parallel oracle-algorithm for finding approximate solutions to the min-max problem

min
(X1,...,Xn)∈A

max
P∈P

Tr(XnP ) (1)

with an oracle for optimization over the set P.

For the purpose of approximating quantum double interactive proofs, our second step demonstrates parallel imple-
mentations of the oracle for the corresponding P. This step is established via another use of the algorithms appearing
in Theorem 1 in special cases. Namely our main algorithm calls special instances of itself as subroutines.

As a special case of the min-max problem where P = {P} is a singleton set, our algorithm yields a parallel
approximation scheme for the following semidefinite programs (SDPs).

minTr(XnP ) s.t. (X1, X2, · · · , Xn) ∈ A
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It has long since been known [Ser91, Meg92] that the problem of approximating the optimal value of an arbitrary SDP
is logspace-hard for P, so there cannot be a parallel approximation scheme for all SDPs unless NC = P. However,
the precise extent to which SDPs admit parallel solutions is not known. Our result adds considerably to the set of such
SDPs.

Techniques
Our algorithm is an example of the matrix multiplicative weights update method (MMW) [AHK05, Kal07, WK06].

We also draw upon the valuable experience of recent applications of this method in quantum computation [JW09,
JUW09, JJUW10, Wu10a]. However, our application of the MMW method is somewhat different from all previous
ones in the sense that our algorithm is applied twice in a two-level recursive fashion. At the top level, our algorithm
makes use of the MMW method to solve a min-max problem. At the bottom level, a special case of our algorithm is
used to solve a SDP problem as the implementation of the oracle for any min-max problem required by the MMW
method.

Previously the MMW was applied to SDPs in the primal-dual way, where MMW method is utilized to either find
a feasible solution to the primal problem with small objective function value or generate an approximately feasible
solution to the dual problem that is used later to bound the optimum value from below. By contrast, we do not take
such primal-dual approach—our SDP solution arises as a special case of a more general min-max problem. More
detailed comparisons between the two methods can be found in the full version paper or the reference [Wu10b].

Competing quantum games with multi-turns admit a natural representation by quantum strategy [GW07], which
may be viewed as a special type of channel specified by its Choi-Jamiolkowski matrix [Wat08, Lecture 5]. However
optimizing over such representation is a task fraught with difficulty [JUW09]. Fortunately, double quantum interactive
proofs admit another representation, namely Kitaev’s transcript representation [Kit02], for strategies that is more
suitable for our purpose. Intuitively the actions of a player are represented by a list ρ1, . . . , ρn of density matrices,
corresponding to “snapshots” of the state of the referee’s qubits at various times , that satisfy a special consistency
condition.

The key property of double quantum interactive proofs that we exploit is the ability to draw a “temporal line” in
the interaction just after Alice’s last action. Given a transcript ρ1, . . . , ρn for Alice, the actions of Bob can then be
represented by another transcript ξ1, . . . , ξm. By optimizing over all such transcripts one obtains an oracle for “best
responses” for Bob to a given strategy of Alice as required by the MMW. Whereas the MMW in its unaltered form can
be used to solve min-max problems over the domain of density operators, we introduce a new extension to this method
for min-max problems over the domain of transcripts—a domain consisting of lists of multiple operators, each drawn
from a strict subset of the density operators. The high-level approach of our method is as follows:

1. Extend the domain from a single density matrix to a list of n density matrices.
This step is straightforward: the MMW can be applied directly to all n density matrices at the same time.

2. Restrict the domain to a strict subset of density matrices.
This step is more difficult. It is accomplished by relaxing the game so as to allow all density matrices, with an
additional penalty term to remove incentive for the players to use inconsistent transcripts.

3. Round strategies in the relaxed game to strategies in the original game.
For this step one must prove a “rounding” theorem , which establishes that near-optimal, fully admissible strate-
gies can be obtained from near-optimal strategies in the unrestricted domain with penalty term.

Finally, it is noteworthy that the proof of our rounding theorem contains an interesting and nontrivial application of
the Bures metric, which is a distance measure for quantum states that is defined in terms of the more familiar fidelity
function. Properties of the trace norm, which captures the physical distinguishability of quantum states, are often
sufficient for most needs in quantum information. When some property of the fidelity is also required one uses the
Fuchs-van de Graaf inequalities to convert between the trace norm and fidelity [FvdG99].

However, every such conversion incurs a quadratic slackening of relevant accuracy parameters. Our study calls
for repeated conversions, which would incur an unacceptable exponential slackening if done naively via Fuchs-van de
Graaf. Instead, we make only a single conversion between the trace norm and the Bures metric and then repeatedly
exploit the simultaneous properties of (i) the triangle inequality, (ii) contractivity under quantum channels, and (iii)
preservation of subsystem fidelity.
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