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We present a quantum algorithm to prepare injective PEPS on a quantum computer, a problem
raised by Verstraete, Wolf, Perez-Garcia, and Cirac [1]. To be efficient, our algorithm requires
well-conditioned PEPS projectors and, essentially, an inverse-polynomial spectral gap of the PEPS’
parent Hamiltonian. Injective PEPS are the unique groundstates of their parent Hamiltonians and
capture groundstates of many physically relevant many-body Hamiltonians, such as e.g. the 2D
AKLT state. Even more general is the class of G-injective PEPS which have parent Hamiltonians
with a ground state space of degeneracy |G|, the order of the discrete symmetry group G. As our
second result we show how to prepare G-injective PEPS under similar assumptions as well. The
class of G-injective PEPS contains topologically ordered states, such as Kitaev’s toric code which
our algorithm is thus able to prepare.

Projected Entangled Pair States, or PEPS [2], have
been proposed as a class of quantum states especially
suited to describe the ground states of local Hamiltoni-
ans in quantum many-body physics. PEPS are a higher-
dimensional generalization of the one-dimensional Matrix
Product States [3], or MPS, for which many interesting
properties have been proven: For example, MPS prov-
ably approximate the ground state of 1D local Hamilto-
nians with constant spectral gap [4, 5], exhibit an area
law [5] as well as an exponential decay of two-point cor-
relation functions. Furthermore, for each MPS with the
injectivity property [6], a parent Hamiltonian can be con-
structed with this MPS as its unique ground state. MPS
can also be prepared efficiently on a quantum computer
[7]. PEPS however form a much richer class of states,
and can e.g. represent critical systems and systems with
topological quantum order [1]. It is conjectured that all
ground states of gapped local Hamiltonians in higher di-
mensions can be represented faithfully as PEPS, and al-
though there are strong indications for this fact, this has
not been proven. What is clear, however, is the fact that
one can also construct parent Hamiltonians for them [6],
and the PEPS will be the unique ground states of those
Hamiltonians if the PEPS obeys the so-called injectivity
condition [6]. Many physically relevant classes of PEPS
on lattices are known to be almost always injective, in-
cluding e.g. the 2D AKLT state [6]. A particularly in-
teresting subclass of PEPS is the one that consists of all
those states whose parent Hamiltonian have a gap that
scales at most as an inverse polynomial as a function of
the system size: in that case, a local observable (i.e. the
local Hamiltonian) allows to distinguish the state from
all other ones, as the ground state always has energy
zero by construction. Almost all PEPS that arise in a
physical context supposedly fall into that class. It was
an open problem whether such states could however be
even created on a quantum computer, as an algorithm
that would allow to prepare any PEPS would allow for

the solution of PP -complete problems [8].
Our main result is to show that well-conditioned in-

jective PEPS can be prepared on a quantum computer
efficiently.

Theorem 1. Let (V,E) be an interaction graph with
bounded degree and some total order defined on V . Let
{A(v)}v∈V[t]

be a set of injective PEPS projectors asso-

ciated with each v in V up to vertex t (according to the
total vertex order) describing a sequence of PEPS |ψt〉,
and let κ = max

v∈V
κ(A(v)) be the largest condition num-

ber of all PEPS projectors. Let ∆ = mint ∆(Ht), where
∆(Ht) is the spectral gap of the parent Hamiltonian Ht

of the PEPS |ψt〉. Then there exists a quantum algorithm
generating the final PEPS |ψ|V |〉 with probability at least

1− ε in time O(|V |2|E|2κ2ε−1∆−1).

The key idea of our approach is to grow the PEPS step
by step. We demand that not only our final PEPS is the
unique ground state of its parent local Hamiltonian, but
also that there exists a sequence of partial sums of the
local terms of the parent Hamiltonian, such that each
partial sum has a unique ground state of its own. Based
on this assumption, the algorithm starts with a physical
realization of the valence bond pairs as its initial state
and iteratively performs entangling measurements on the
virtual particles to map virtual degrees of freedom to
physical ones, just as in the definition of the PEPS. The
PEPS is called injective, iff this map is (left) invertible
which can only be the case if the dimension of the phys-
ical space is actually at least as large as the dimension
of the virtual space at each vertex. Preparing a PEPS
by measurements may seem to require post-selection to
project onto the right measurement outcome. To over-
come this issue we use the Marriott-Watrous trick [9, 10]
of undoing a measurement based on Jordan’s lemma [11]
and combine it with the uniqueness property of injective
PEPS [6] to prepare the required eigenstates. A key el-
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ement that contributes to the success of this algorithm
is the fact that the measurements are not done locally,
such as in the framework of dissipative quantum state
engineering [12], but globally by running a phase estima-
tion algorithm that singles out the ground subspace; a
similar approach was used in the context of the quantum
Metropolis sampling algorithm [13]. The full paper de-
scribing the preparation of injective PEPS is available on
the arXiv [17].

The creation of exotic quantum states is arguably one
of the most challenging goals of current physics. While
many interesting families of quantum states can be pre-
pared by the above algorithm, the technical assump-
tion of “injectivity” excludes the preparation of partic-
ularly intersting states with topological quantum order,
since the injectivity property immediately excludes par-
ent Hamiltonians with degenerate ground states. On the
other hand, it is well known, that PEPS are in fact able
to describe such phases of matter when one relaxes the
injectivity condition and allows for a slightly more gen-
eral class of states [14–16].

As our second result, we show that it is possible to
generalize the previously stated result to this larger class
of PEPS, with only minor modifications in the algorithm.
One can relax the requirement of injectivity to a class of
PEPS which are referred to as G-injective PEPS [18]. A
G-injective PEPS is defined with respect to some finite
symmetry group G that is acting on the virtual indices
of the PEPS tensor. The requirement of G-injectivity
reduces to two points: First, that the PEPS is invari-
ant under the symmetry group G and second, that the
PEPS tensor posesses a left inverse on the G-symmetric
subspace. A central feature of the G-injective PEPS is
that the parent Hamiltonian construction yields a Hamil-
tonian that has a degenerate ground state manifold. The
degeneracy is given by the order of the group |G|, if the
PEPS tensor is invariant under a semi-regular represen-
tation of the group, i.e a representation which contains a
copy of each irrep of the group. The class of G-injective
PEPS is therefore much richer and entails states that
are known to possess topological order, such as topolog-
ical spin liquids, states corresponding to Kitaev’s quan-
tum doubles and other quantum states that exhibit non-
abelian topological order.

Even though preparing G-injective PEPS only requires
a minor modification of the algorithm, the analysis proves
more challenging, since at each step of the algorithm
we construct a projector, by making use of the quan-
tum phase estimation subroutine, which projects on
the ground state manifold of the corresponding parent
Hamiltonian. As already stated, in the case ofG-injective
PEPS this ground state is no longer unique. However,
the assumption of uniqueness of the state was an impor-

tant ingredient in the analysis of the algorithm for the
injective PEPS. In fact, this problem can be overcome as
long as the boundaries of the state are still open, by con-
structing appropriate boundary Hamiltonians to select
one particular state from the degenerate ground state
subspace. We are therefore only confronted with a de-
generate ground state space during the final steps of the
algorithm, when we start to close the boundaries. How-
ever, thanks to the PEPS structure, the crucial applica-
tion of Jordan’s lemma ([17, Lemma III.2]) generalises
in this special case, and the degeneracy during the final
stages of the algorithm does not change the performance
significantly. We give the result in Theorem 2, which
establishes almost the same runtime result for the G-
injective case as Theorem 1 does for the simpler injective
case, only with a modified effective condition number of
the local tensors, the PEPS condition number κG, which
is defined as follows:

Definition 1 (PEPS condition number). For a local G-
injective PEPS tensor A(v) we define the the condition
number as

κv =
σmax

(
A(v)

∣∣
SG

)
σmin

(
A(v)

∣∣
SG

) , (1)

where SG labels the symmetrtic subspace of the group G
and σi(A) denote the singular values of the map Av :
⊗kCD → Cd. The PEPS condition number κG for a
PEPS (V,E) is then defined as κG = max

v∈V
κv(A(v)).

This number can be understood as the maximal con-
dition number, i.e. the ratio between the largest and the
smallest singular value, of the PEPS map restricted to
the invariant subspaces of the irreducible representations
of the group G. If we restrict the map to the invariant
subspaces, we are ensured that κG < ∞, because the
assumption of G-injectivity ensures that the restrictions
of the PEPS maps are invertible. With this quantity at
hand the total runtime scaling of the algorithm can be
expressed in the following theorem.

Theorem 2 ([19]). Let (V,E) be an interaction graph
with bounded degree and some total order defined on V .
Let {A(v)}v∈V[t]

be a set of G-injective PEPS projectors

associated with each v in V up to vertex t (according
to the total vertex order) describing a sequence of PEPS
|ψt〉, and let κG be the PEPS condition number. Let ∆ =
mint ∆(Ht), where ∆(Ht) is the spectral gap of the parent
Hamiltonian Ht of the PEPS |ψt〉. Then there exists a
quantum algorithm generating the final PEPS |ψ|V |〉 with

probability at least 1− ε in time O(|V |2|E|2κ2Gε−1∆−1).
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