
Optimal bounds for quantum bit commitment∗
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1 Introduction

Quantum information has given us the opportunity to revisit information theoretic security in
cryptography. The first breakthrough result was a protocol of Bennett and Brassard [BB84] that
showed how to securely distribute a secret key between two players in the presence of an omnipo-
tent eavesdropper. Thenceforth, a long series of work has focused on which other cryptographic
primitives are possible with the help of quantum information. Unfortunately, the subsequent re-
sults were not positive. Mayers and Lo, Chau proved the impossibility of secure quantum bit
commitment and oblivious transfer and consequently of any type of two-party secure computa-
tion [May97, LC97, DKSW07]. However, several weaker variants of these primitives have been
shown to be possible [HK04, BCH+08].

The main primitives that have been studied are coin flipping, bit commitment and oblivious
transfer. Coin flipping is a cryptographic primitive that enables two distrustful and far apart
parties, Alice and Bob, to create a random bit that remains unbiased even if one of the players tries
to force a specific outcome. It was first proposed by Blum [Blu81] and has since found numerous
applications in two-party secure computation. In the classical world, coin flipping is possible under
computational assumptions like the hardness of factoring or the discrete log problem. However,
in the information theoretic setting, it is not hard to see that in any classical protocol, one of the
players can always bias the coin to his or her desired outcome with probability 1.

Aharonov et al. [ATVY00] provided a quantum protocol where no dishonest player could bias the
coin with probability higher than 0.9143. Then, Ambainis [Amb01] described an improved protocol
whose cheating probability was at most 3/4. Subsequently, a number of different protocols have
been proposed [SR01, NS03, KN04] that achieved the same bound of 3/4. On the other hand,
Kitaev [Kit03], using a formulation of quantum coin flipping protocols as semi-definite programs
proved a lower bound of 1/2 on the product of the two cheating probabilities for Alice and Bob
(for a proof see e.g. [ABDR04]). In other words, no quantum coin flipping protocol can achieve
a cheating probability less than 1/

√
2 for both Alice and Bob. Recently, we resolved the question

of whether 3/4 or 1/
√

2 is ultimately the right bound for quantum coin flipping by constructing a
strong coin-flipping protocol with cheating probability 1/

√
2 + ε ([CK09]).

The protocol in [CK09] is in fact a classical protocol that uses the primitive of weak coin flipping
as a subroutine. In the setting of weak coin flipping, Alice and Bob have a priori a desired coin
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outcome, in other words the two values of the coin can be thought of as ‘Alice wins’ and ‘Bob
wins’. We are again interested in bounding the probability that a dishonest player can win this
game. Weak coin flipping protocols with cheating probabilities less than 3/4 were constructed
in [SR02, Amb02, KN04]. Finally, a breakthrough result by Mochon resolved the question of
the optimal quantum weak coin flipping. First, he described a protocol with cheating probability
2/3 [Moc04, Moc05] and then a protocol that achieves a cheating probability of 1/2 + ε for any
ε > 0 [Moc07].

In other words, in coin flipping, the power of quantum really comes from the ability to perform
weak coin flipping. If there existed a classical weak coin flipping protocol with arbitrarily small
bias, then this would have implied a classical strong coin flipping protocol with cheating probability
arbitrarily close to 1/

√
2 as well.

2 Our contribution

In this paper, we turn our attention to bit commitment. Even though this primitive is closely related
to coin flipping we will see that actually the results are surprisingly different. A bit commitment
protocol consists of two phases: in the commit phase, Alice commits to a bit b; in the reveal phase,
Alice reveals the bit to Bob. We are interested in the following two probabilities: Alice’s cheating
probability is the average probability of revealing both bits during the reveal phase, and Bob’s
cheating probability is the probability he can guess the bit b after the commit phase.

Using the known results about coin flipping we can give the following bounds on these probabil-
ities. First, most of the suggested coin flipping protocols with cheating probability 3/4 were using
some form of imperfect bit commitment scheme. More precisely, Alice would quantumly commit
to a bit a, Bob would announce a bit b and then Alice would reveal her bit a. The outcome of the
coin flip would be a ⊕ b. Hence, we already know bit commitment protocols that achieve cheat-
ing probability equal to 3/4. Note also that Ambainis had proved a lower bound of 3/4 for any
protocol of this type. On the other hand, a bit commitment protocol with cheating probability p
immediately gives a strong coin flipping protocol with the same cheating probability (by the above
mentioned construction) and hence Kitaev’s lower bound of 1/

√
2 still holds.

The question of the optimal cheating probability for bit commitment remained unresolved,
similar to the case of coin flipping that was answered in [CK09]. Here, we find the optimal cheating
probability for quantum bit commitment, which surprisingly is neither of the above mentioned
constants. In fact, we show that it is approximately 0.739.

We start by providing a lower bound for any quantum bit commitment protocol. In order to do
so, we describe an explicit cheating strategy for Alice and Bob in any protocol. In high level, let
|ψb〉 be the joint state of Alice and Bob after the commit phase and σb Bob’s density matrix, when
Alice honestly commits to bit b. It is well known that there exists a cheating strategy for Bob that
succeeds with probability

P ∗B ≥
1

2
+

∆(σ0, σ1)

2

where ∆(·, ·) denotes the trace distance between two density matrices.
For Alice, we consider the following cheating strategy. Instead of choosing a bit b in the

beginning of the protocol, she goes into a uniform superposition of the two possible values and
controlled on this qubit she performs honestly the commit phase. Then, after the commit phase,
when she wants to reveal a specific bit b, she first performs a unitary operation on her part to
transform the joint state to one which is as close as possible to the honest state |ψb〉 (the unitary
is given by Uhlmann’s theorem) and then performs the reveal phase honestly.
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It is not hard to see that Alice’s cheating probability is at least

P ∗A ≥
1

2

(
F 2(σ+, σ0) + F 2(σ+, σ1)

)
where F (·, ·) denotes the fidelity between two states and σ+ = 1

2 (σ0 + σ1).
In order to conclude we prove our main technical lemma

Proposition 1 Let σ0, σ1 any two quantum states. Let σ+ = 1
2 (σ0 + σ1). We have

1

2

(
F 2(σ+, σ0) + F 2(σ+, σ1)

)
≥ (1− (1− 1√

2
)∆(σ0, σ1))

2

By equalizing the two lower bounds that are expressed in terms of the trace distance we conclude
that

Theorem 1 In any quantum bit commitment protocol with cheating probabilities P ∗A and P ∗B we

have max{P ∗A, P ∗B} ≥
−11+6

√
2+
√

21−12
√
2

4(2
√
2−3) ≈ 0.739.

Then, we provide a matching upper bound. We describe a quantum bit commitment protocol
that achieves a cheating probability arbitrarily close to 0.739. Out protocol uses a weak coin flipping
protocol with cheating probability 1/2 + ε as a subroutine and achieves a cheating probability for
the bit commitment of approximately 0.739 +O(ε).

Theorem 2 There exists a quantum bit commitment protocol that uses a weak coin flipping pro-
tocol with cheating probability 1/2 + ε as a subroutine and achieves cheating probabilities less than
−11+6

√
2+
√

21−12
√
2

4(2
√
2−3) +O(ε) ≈ 0.739 +O(ε).

We note that our protocol is in fact quantum even beyond the weak coin flip subroutine. This
is in fact necessary. We show that any classical bit commitment protocol with access to a perfect
weak coin (or even strong) cannot achieve cheating probability less than 3/4.

Theorem 3 Any classical bit commitment protocol with access to perfect weak (or strong) coin
flipping cannot achieve cheating probabilities less than 3/4.

Unlike the case of quantum strong coin flipping that is derived classically when one has access
to a weak coin flipping protocol, the optimal quantum bit commitment takes advantage of quantum
effects beyond the weak coin flipping subroutine.
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