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Extended Abstract

Hastings’ 1D area law [1] is arguably one of the most important results in quantum Hamiltonian

complexity in recent years. It states that the entanglement entropy in the ground state of gapped

1D local system is bounded by a constant, independent of the system size. Specifically, for a nearest

neighbor system on a chain H =
∑n−1
i=1 Hi with particle dimension d, interaction strength ‖Hi‖ ≤ J

and a spectral gap ε > 0, the theorem states that entanglement entropy across any cut in the chain is

upper bounded by S ≤ eO(X) for X
def
= J log d

ε .

Hastings’ result implies that ground states of gapped 1D systems are in some sense classical. Their

limited amount of entanglement implies that they can be well-approximated by states that admit a

classical description of a polynomial size (MPS), which can in turn be used to approximate any local

observable efficiently on a classical computer. From a practical point of view, this gives us a solid

theoretical understanding of why variational methods such as DMRG work so well on these systems.

From a complexity-theoretic point of view it tells us that the local Hamiltonian problem for such 1D

systems with a constant spectral gap is inside NP. In fact, it means that the problem is inside NP

as long as that gap is above O((log logn)−1), where n is the size of the system, or alternatively that

DMRG algorithms are expected to work well for these type of systems.

Two major issues remained open following Hastings’ paper. The first is an extension of his results to

2 and 3 dimensional systems. The second was the dependence of the bound on X. Hastings shows that S

scales exponentially in X, whereas the best lower bounds come from specially crafted 1D Hamiltonians

[2, 3], scale like ε−1/4. This is important for two reasons: the dependence on ε determines how close

to the critical point (ε = 0) the ground state admits a polynomial size MPS, and by implication the

viability of variational methods for such systems. At the same time, improving the dependence on

log d provides a possible path towards proving an area law in higher dimensions. Indeed, a bound

on S that scales as O(log d) would imply higher dimensional area laws by the naive reduction from a

D-dimensional system to a 1-D system by fusing together particles on surfaces parallel to the boundary.

A new approach to proving the area law for 1D frustration free systems (i.e., systems where the

ground state also minimizes the energy of every local term), was introduced in Ref. [4]. The proof

∗School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
†Department of Computer Science, UC Berkeley
‡Department of Computer Science, UC Berkeley

1



replaced Hastings’ analytical machinery, including the Lieb-Robinson bound and spectral Fourier anal-

ysis, with the Detectability Lemma [5], a combinatorial lemma about local Hamiltonians. This resulted

in a somewhat cleaner and simpler proof, but nevertheless, the overall structure of the two proofs was

identical, and consequently the entropy bound was the same, i.e., S ≤ eO(X).

In this paper we give a new proof of the 1D area-law for frustration-free systems. Following Ref. [4],

the new proof uses the detectability lemma as its starting point. Unlike Ref. [4], however, it uses a

very different approach from that of Hastings’ proof, and consequently it yields an exponentially better

bound on the entanglement entropy. We prove:

Theorem 1 Let |Ω〉 be the ground state of a frustration-free, nearest neighbor Hamiltonian system

H =
∑n
i=1Hi on a 1D chain of n particles of dimension d. Assume that the system has spectral gap

ε > 0, and an interaction strength ‖Hi‖ ≤ J . Then along any cut in the chain, the entanglement

entropy of |Ω〉 is bounded by

S(Ω) ≤ O(1) ·X3 log8X , (1)

for X
def
= J log d

ε .

Our result narrows to a polynomial factor the gap between the upper and lower bounds on the entan-

glement entropy as a function of the spectral gap ε. In addition, in 2 or more dimensions, we were able

to utilize some of the local structure of the problem along the boundary surface, and prove that

Theorem 2 In higher dimensions, the entanglement entropy in the ground state between a contiguous

region L and the rest of the system is bounded by

SL(Ω) ≤ O(1) · |∂L|2 log2X3 log8(|∂L| ·X) . (2)

This bound is at the cusp of being non-trivial; any further improvement that would bound the entropy

by |∂L|2−δ for any δ > 0, would prove a sub-volume law for 2D.

Our results are proved only for the frustration-free case. Nevertheless, we believe that they may be

generalizable to the frustrated case. Indeed, Hastings’ original proof [1] essentially reduces the frustrated

case to an approximately frustration-free system by coarse graining, and a similar approach may also

work here. Additionally, proving the area law in 2 or more dimensions remains an extremely important

open problem even in the frustration-free case.

Outline of the proof

The key to bounding the entropy across a cut is finding a product state |φ0〉 = |φL〉⊗ |φL〉 with respect

to the bi-partitioning of the system, which has large overlap with |Ω〉. Our approach to finding such

a product state is to start with any product state with non-zero overlap with |Ω〉, and act on it with

an operator that increases its overlap with |Ω〉, without increasing its Schmidt rank (SR) much. i.e.,

we construct an operator K with the following property: K fixes |Ω〉, but when applied to any state

|ψ〉, it shrinks the component orthogonal to |Ω〉 by a factor of ∆ while increasing the SR of |ψ〉 by a

factor of at most D. Clearly, there is a race between these two factors D and ∆. It turns out that when

D · ∆ < 1/2, we can amplify the overlap with |Ω〉 by replacing |φ0〉 by one of the Schmidt vectors of
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K|φ0〉. This amplification continues all the way until the overlap is
√

1/(2D). A few more applications

of K to this product state yield a state with Schmidt rank DO(1), which has constant (D-independent)

overlap with |Ω〉. Further applications of K give rise to Schmidt coefficients with vanishing mass, and

therefore the entanglement entropy of |Ω〉 can be bounded by O(logD).

Our starting point for constructing the operator K is the detectability lemma (DL). Let Pi denote

the (local) projection into the ground space of the local Hamiltonian term Hi. We can partition the

projections {Pi} into two subsets of even and odd projections, which are called “layers”. Inside each

layer, the projections commute because they are non-intersecting. Consequently, Πodd
def
= P1 ·P3 ·P5 · · ·

and Πeven
def
= P2 ·P4 ·P6 · · · are the projections into the common eigenspace of the odd and even layers.

Then according to the DL, the operator A
def
= ΠevenΠodd is an approximation to the ground state

projection: it preserves the ground state, while shrinking its perpendicular space by an n-independent

factor ∆0(ε) ' 1 − cε (where c is some geometrical factor). Moreover, each application of A increases

the SR of our state by a constant factor of D0
def
= d2 (due to the projection that intersects with the cut

in the chain). Unfortunately, we would expect D0∆0 � 1, so the operator A does not by itself suffice

to carry out our plan.

The proof then proceeds by modifying the operator A to decrease its SR factor while maintaining

most of its shrinking factor. For concreteness, assume that the even layer contains the projection that

intersects with the cut. We will focus on a segment of m projections around the cut, and denote their

product by Πm, so that Πeven = ΠmΠrest. We will replace the operator Πeven with Π̂mΠrest that

closely approximates Πeven while increasing the SR by much less than D0 (when amortized over several

applications).

To achieve this, consider what happens when we apply A`; picture A` as a stack of 2` layers that

correspond to the alternating applications of Πeven and Πodd. If we could somehow replace the product

Πm by a product that contains only rm projections for some r � 1 (not necessarily the same projections

every time), then we would be able to find a column that contains at most r` projections. The SR

increase across that column would be at most Dr`
0 , and as that column is at distance of at most m

particles from the cut, it would imply that the SR at the cut increased by at most a factor of Dr`+m
0 .

The average SR factor is therefore D
r+m/`
0 which approaches Dr

0 as ` increases. The central lemma

of the paper is called the “diluting lemma”, and it does exactly this. We show how the problem of

finding a diluted approximation for Πm can be reduced to the classical problem of finding a low-degree

polynomial P (x) such that P (0) = 1 and for every x ∈ [1,m], |P (x)| < δ < 1 for some constant

0 < δ < 1. It turns out that the best polynomial to achieve this (i.e., the polynomial of the lowest

degree), is the Chebyshev polynomial of degree
√
m, properly scaled to the region [1,m]. We use this

polynomial to define Π̂m, the approximation of Πm, which results in a diluting factor of r = 1√
m

. This

translates into an SR factor of D = D
1/
√
m

0 at the price of slightly worsening the shrinking factor ∆0(ε).

The end result is thus an operator K with factors (D,∆) such that D ·∆ < 1/2 as needed.

A clarification.

This work should be viewed as the union of the improved area law bound from Ref. [6], which was

accepted to FOCS 2011, with subsequent ideas using Chebyshev polynomials to strengthen and simplify

the results. We attach a copy of Ref. [6].
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