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Motivated by concerns that non-local measurements may violate causality, Vaidman [1] has shown
that any non-local operation can be implemented using local operations and a single round of
simultaneously passed classical communication only. His protocols are based on a highly non-trivial
recursive use of teleportation. Here we give a simple proof of this fact, reducing the amount of
entanglement required from a doubly exponential to an exponential amount. We also prove a linear
lower bound on the amount of entanglement consumed for the implementation of a certain non-local
measurement.

These results have implications for position-based cryptography: any scheme becomes insecure if
the adversaries share an amount of entanglement scaling exponentially in the number of communi-
cated qubits. Furthermore, certain schemes are secure under the assumption that the adversaries
have at most a linear amount of entanglement and are required to communicate classically.

Introduction

Throughout its history, quantum mechanics has again
and again seemed at odds with relativistic causality. One
debate resulting from such concerns centers around the
measurability of a non-local observable in a manner con-
sistent with causality. In its most simple form, it arises
from the observation that certain non-local POVMs can-
not be simulated by local operations and a single round
of classical communication. This seems to suggest that
certain non-local observables cannot be measured at a
fixed time t between spacelike separated regions and are
hence unphysical.

Vaidman [1] has recently resolved this long-standing
debate to a degree almost entirely satisfactory to a quan-
tum information scientist: he showed that any measure-
ment can be implemented with local operations and a
single round of simultaneously passed communication, if
auxiliary entanglement is available, see Fig. 1. The same
is true for general non-local unitaries. Here we give a
simple proof of this remarkable fact and make progress
towards answering how much entanglement is required.
The minimal amount of entanglement that allows to im-
plement a given operation using a single round of classical
communication is a natural measure of its ‘entanglement
content’. On a conceptual level, it can be seen as the
counterpart of the entanglement of formation for a given
state in the same way as the entangling capacity is a
counterpart of the distillable entanglement.

Establishing bounds on the entanglement required for
such an ‘instantaneous’ computation not only is of fun-
damental theoretical interest, but also has direct appli-
cations to position-based quantum cryptography. The
goal of the latter is to use the position of an entity as
its only credential. A fundamental cryptographic prob-
lem in this context is that of position-verification, where
a prover tries to convince several verifiers that he is in a

∗A full technical version is available at [2]

certain location. The no-cloning principle has motivated
various proposals of quantum protocols [3–5] supposedly
achieving this functionality. However, as recently shown
in [6], the feasibility of instantaneous computation given
entanglement directly implies that no such scheme can
be unconditionally secure. Fortunately, however, it turns
out that these previously known attacks require a large
amount of entanglement (see below); this motivates the
question of whether position-based cryptography is real-
izable under the assumption that the adversaries’ entan-
glement is limited. Indeed, this is reminiscent to the story
of bit commitment, where security can be established in
spite of the Mayer-Lo-Chau impossibility proof [7, 8] if
the adversary is assumed to have a limited [9] or noisy [10]
quantum memory. A first step in this direction was made
in [6, 11], where schemes were shown to be secure if the
adversaries have no or only a constant amount of entan-
glement.

Main results

Consider a bipartite Hilbert space HAB with n qubits
on each side. For a unitary UAB on HAB, let qǫ(UAB) be
the amount of auxiliary entanglement required to imple-
ment UAB using local operations and a single round of
classical communication, see Fig. 2, with accuracy ǫ (in
diamond distance on the set of CPTP maps). Clearly,
product unitaries require no entanglement to implement,
that is,

q0(UA ⊗ UB) = 0 for all unitaries UA, UB ,

while qǫ(UAB) > 0 for a generic bipartite unitary UAB. It
is easy to identify large classes of non-product unitaries
for which q0(UAB) < O(n) (see e.g., [12]). Our main
result is the bound

qǫ(UAB) ≤ 28n+4/ǫ2 for every unitary UAB . (1)

Indeed, given UAB, we construct a protocol as on the
rhs of Fig 2; the involved measurements make black-box
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FIG. 1: Instantaneous measurement of a non-local
POVM OAB = {Oγ

AB}γ : Alice and Bob share, in addition
to the state ρAB to be measured, an auxiliary entangled
state ηA′B′ (indicated by the wiggly line). They perform local

measurements E = {Eα
AA′}α and F = {F β

BB′}β , respectively.
They send their results to Charlie, who is at a point in the
intersection of their future lightcones. Charlie computes a
function γ̂ = g(α,β) of their measurement results. The mea-
surements and the post-processing function are chosen in such
a way that this simulates the measurement of ρAB with the
non-local POVM OAB .

use of UAB roughly 2O(n)/ǫ2 times. This scaling in the
number of qubits matches the complexity of doing to-
mography on such a general unitary, suggesting that our
protocol may be optimal among those relying on a black-
box use of the unitary. A similar statement holds for
POVMs, and our results directly generalize to the multi-
partite case.
In contrast, a careful analysis (see [2]) shows that Vaid-

man’s protocol, the only previously known general re-
sult of this kind, gives a bound of the form qǫ(UAB) ≤

2O(log(1/ǫ)·24n) for a generic unitary UAB. This unfavor-
able scaling arises from a recursive use of standard tele-
portation (Bell) measurements. Roughly speaking, Vaid-
man manages to avoid the need for communicating mea-
surement results (i.e., necessary correction operations) to
perform teleportation. Instead, his protocols use a set of
teleportation measurements on ebits organized in a tree-
like form, with each vertex indexed by a sequence of mea-
surement results. As a consequence, these measurements
effectively achieve postselection onto the trivial measure-
ment outcome (which requires no correction operation),
at the cost of consuming a doubly exponential amount of
entanglement.
We also show that there is a POVM OAB which can-

not be implemented with less than a linear amount of
entanglement, i.e.,

qǫ(OAB) ≥ Ω(n) for any ǫ > 0 . (2)

While statements (1) and (2) advance the characteriza-
tion of entanglement requirements in instantaneous non-
local operations, many challenging open problems re-
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FIG. 2: Instantaneous implementation of a non-local uni-
tary UAB on a bipartite state ρAB using the shared entangled
state ηA′B′ . Alice and Bob perform local (partial) measure-

ments E = {Eα
AA′}α and F = {F β

BB′}β . According to the
(communicated) measurement results (α, β), Alice and Bob
apply local post-processing operations Mα,β and Nα,β, re-
spectively. The measurements and postprocessing operations
are chosen such that the resulting (average) state is close to

the target state UABρABU
†
AB .

main. For example, we have been unable to establish
a similar lower bound for unitaries, or prove some kind
of optimality for our protocol.
Applied to position-based cryptography, (1) directly

implies that an exponential amount of entanglement (in
the number of communicated qubits) is sufficient to ren-
der any such scheme insecure. On the other hand, (2)
gives rise to a scheme for position-verification with ex-
ponential soundness (i.e., exponentially small cheating
probability) if we assume that the adversaries have fewer
than n/2 bits of entanglement (e.g. n/3 ebits) and can
only communicate classically during the attack. Note
that the latter assumption is implicit in the sequential
protocol of [6], which achieves exponential soundness
only if the adversaries have no entanglement. Lifting
the restriction to classical communication is yet another
challenging problem which so far has only been achieved
for a single-qubit protocol with constant soundness [6].
Since the position-based cryptographic scheme derived

from (2) requires the manipulation of high-dimensional
states by the verifiers, we analyze a different protocol
based on single-qubit operations only and argue that it
has identical security parameters. This is achieved by
reducing the problem of designing protocols allowing en-
tanglement to the case of no prior entanglement (the lat-
ter was previously analyzed in [6]).

Techniques

Our proof of (1) is based on ‘port-based teleporta-
tion’, a neat variant of teleportation by Ishizaka and Hi-
roshima [13, 14]. We believe that this primitive may
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Alice and Bob share one ebit of auxiliary
entanglement in registers A′ : B′, and for every

j ∈ {1, . . . , N}, two ebits of entanglement in A′′
j : B′′

j .

We write A′′N = A′′
1 · · ·A′′

N and B′′N = B′′
1 · · ·B′′

N .

1(a). Bob performs a standard teleportation mea-
surement between B and B′ with outcome T ∈
{I,X, Y, Z}.

1(b). Alice applies the port-based teleportation-
measurement on her two qubits in systems AA′

and her part of the shared entanglement in
A′′N : B′′N . She gets an index i ∈ {1, . . . , N}.

1(c). For each j ∈ {1, . . . , N}, Bob first applies I⊗T
to B′′

j and then measures it using the POVM
OAB. Let γj be the outcome of this measure-
ment.

2. Alice sends i, and Bob sends the list {(j, γj)}j
to Charlie.

3. Upon receiving this classical information, Char-
lie outputs γi.

FIG. 3: Instantaneous implementation of a two-qubit POVM
OAB = {Oγ

AB}γ on a state ρAB. Here N = O(1/ǫ2), where ǫ
is the accuracy of the simulation. Steps 1(a)–1(c) do not need
to be performed in the prescribed order.

have useful applications in other areas of (theoretical)
quantum information, and are excited to be able to pro-
mote its use by giving other concrete applications. Port-
based teleportation is based on the idea that the com-
plexity of teleportation measurements and correction op-
erations can be traded off (instead of the standard Bell-
measurement/Pauli correction). Ishizaka and Hiroshima
show that there is a POVM {Ei}

N
i=1 on Alice’s input

qubit and half of N := O(1/ǫ2) auxiliary shared ebits
such that, given the measurement result i, Bob’s i-th
register contains Alice’s input within its ǫ neighborhood
in trace distance. Hence Bob’s correction operation is
trivial: it consists of tracing out all but the i-th subsys-
tem. They also give a generalization to the teleportation
of several qubits in this fashion.
Using port-based teleportation measurements, the in-

stantaneous implementation of non-local POVMs become
completely trivial; see Fig. 3 for the implementation of
a two-qubit measurement. The case of a bipartite uni-
tary is slightly involved, but still very simple: it involves
an additional ‘standard’ teleportation measurement and
correction operation. Observe that our measurements
are constructed in a non-recursive fashion and are thus
significantly simpler than Vaidman’s approach. Details
can be found in [2].

Conclusions

Vaidman’s work is the culmination of a long line of
research [15–20] focused on the feasibility of instanta-
neous measurement, a central requirement for the com-
patibility of quantum mechanics with relativistic causal-
ity. His solution to this fundamental problem is arguably
one of the most intricate known protocols in quantum
information processing. Here we have given a signifi-
cantly simpler solution which also has a dramatic quanti-
tative benefit: it reduces the entanglement consumption
by an exponential amount. This is based on a little-
known yet powerful form of teleportation introduced by
Ishizaka and Hiroshima. We have also established a lin-
ear lower bound on the required entanglement for the in-
stantaneous implementation of a certain non-local mea-
surement. The recently discovered connection between
instantaneous computation and position-based cryptog-
raphy provides a practical motivation for such quanti-
tative questions: indeed, our results directly give new
cryptographic security proofs and impossibility results.
Further progress on quantifying the resource require-

ments for instantaneous computation is desirable both
from a fundamental as well as a cryptographic perspec-
tive. Better bounds (or equivalently, tighter security
proofs) appear to require strong entanglement monogamy
relations, and many standard techniques such as resource
inequalities are inapplicable in this setting because of the
communication constraints. In this sense, the century-
old problem of instantaneous measurements brings the
limitations of our current quantum-information tech-
niques into the limelight.
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