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Many “paranoid” quantum information processing
protocols, such as fault tolerance and cryptography, re-
quire rigorously validated quantum hardware. Such
hardware (elementary state- and gate-producing com-
ponents) is calibrated using tomography, by combining
many measurement results into a single estimate of the
state ρ or process χ. But a point estimate – a single
matrix (ρ̂ or χ̂) that is probably close to the true state
ρ or process χ – cannot provide the rigorous validation
needed for paranoid protocols. Region estimators, on the
other hand, provide just such a guarantee.

⇒
This paper presents likelihood-ratio confidence regions, a
powerful, reliable, and convenient tool for rigorous state
(and process1) tomography.
A REGION ESTIMATOR is a map from data D to
regions R̂ in state space. Its defining property is correct-
ness: “R̂(D) contains the true state/process with
probability α = 1 − ε.” Some popular ad hoc estima-
tors, such as bootstrapped standard errors, generally fail
to satisfy any such condition. A good region estimator
should also assign the smallest achievable regions. Other
ad hoc estimators, like those derived from large deviation
bounds, assign much larger regions than necessary.

The two good candidates differ mainly in how they
define correctness. Credible regions are inherently
Bayesian, and define correctness as

Pr(ρtrue ∈ R̂(D)|D) ≥ α.

But this condition requires assuming a prior distribu-
tion Pr(ρtrue) – and its validity depends critically on the
“truth” of the prior. As a result, credible regions can
be explicitly broken by adversarial choice of ρtrue. This
renders them unsuitable for paranoid applications. Con-
fidence region estimators (CREs), define correctness as

Pr(ρtrue ∈ R̂(D)|ρtrue) ≥ α for all ρtrue (1)
⇒ Pr(ρtrue ∈ R̂(D)) ≥ α,

1 The Choi-Jamiolkowski isomorphism makes process estimation
formally equivalent to state estimation, on a larger system

and are guaranteed to produce a region containing ρtrue

with probability α, even if ρtrue is chosen adversarially!
Eq. 1) leaves us a great deal of freedom in defining a
CRE that (i) assigns small, powerful regions, while (2)
minimizing the complexity of computing R̂(D).
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Likelihood ratio (LR) confidence regions achieve
correctness, near-optimal power, and simplicity all at
once. LR regions are defined and computed using the
likelihood function, L(rho) ≡ Pr(D|ρ), where D is the
actual observed data. Given data D, we report the region

R̂(D) =
{

all ρ such that − 2 log
(
L(ρ)
Lmax

)
≤ λc

}
. (2)

Lmax is the maximum value of L(ρ). The cutoff λc (see
“Correctness” below) is set by the system dimension d
and the desired confidence α.

POWER can be quantified by volume.

V (R) =
∫

ρ∈R
dρ.

A powerful estimator assigns small regions. Remarkably,
it does not matter what measure dρ is chosen – the same
estimator minimizes all notions of volume! But V (R̂(D))
cannot be simultaneously minimized for every dataset D.
Nor can we simultaneously minimize expected volume,

V (ρ) =
∑
D

Pr(D|ρ)V (R̂(D)),

for every true state ρ. So instead of a unique “best” CRE,
we find a whole class of admissible CREs (ones that are
not strictly dominated by any other). Each admissible es-
timator minimizes average expected volume with respect
to some averaging measure Pr(ρ)dρ,〈

V
〉

Pr(ρ)dρ
=
∫

V (ρ)Pr(ρ)dρ,

and is (see technical paper for a simple proof) a
probability-ratio estimator :

R̂(D) =
{

all ρ such that
Pr(D|ρ)
Pr(D)

≥ rc(ρ)
}

. (3)
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The averaging measure determines Pr(D) =∫
Pr(D|ρ)Pr(ρ)dρ, while the cutoff rc(ρ) is chosen

explicitly to satisfy Eq. 1.
If ρ were distributed according to a known mea-

sure, then obviously we should use the corresponding
probability-ratio estimator. Lacking (in general) reliable
prior knowledge of this sort, we want an estimator with
good behavior for all states ρ. We get it (see technical
paper) by choosing Pr(ρ)dρ so that

Pr(D) ∝ max
ρ

Pr(D|ρ).

Inserting this choice into Eq. 3 – and observing that
Pr(D|ρ) = L(ρ) – yields the LR prescription given in
Eq. 2.

CORRECTNESS relies on a wise choice of the cutoff
λc. Too low, and Eq. 1 is violated. Too high, and overly
large regions are assigned. The perfect choice of λc varies
with ρ, and barely satisfies

Pr [λ(D, ρ) ≤ λc(ρ)] ≥ α, (4)

where λ(D, ρ) = −2 log (L(ρ)/Lmax) is the loglikelihood
ratio statistic. But allowing λc to vary with ρ yields
disconnected confidence regions. So, instead, we replace
λc(ρ) with a constant upper bound

λc
>∼ max

ρ
λc(ρ),

which (at a small cost in power) ensures connected and
convex regions.

For any given ρtrue, λ is a statistic (i.e., a random
variable depending on the data D). We calculate λc by
studying the worst-case distribution of λ and then mak-
ing sure that Eq. 4 is always satisfied. If the data were
Gaussian (rather than multinomial), with K = d2 − 1
degrees of freedom (corresponding to the d2− 1 indepen-
dent parameters in ρ), then λ would be a χ2

K random
variable with cumulative distribution

Pr(λ ≤ x) =
γ
(

K
2

)
, x

2

Γ
(

K
2

) .

But this Gaussian approximation is not a rigorous lower
bound on the cumulative distribution of λ. Deriving such
a bound is necessary, but tedious (see technical paper).
One series of approximations yields

Pr(λ ≤ x) ≥
γ
(

K
2

)
, x

2

Γ
(

K
2

) −e−x/2
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π
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−
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π

K
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(5)
Although numerics suggest that this bound is loose by a
factor of

√
x (Fig. 1), the e−x/2 term dominates. More

importantly, it is a strict bound. So regions based on

Eq. 5 are slightly loose, but have guaranteed coverage
probability of at least α.
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FIG. 1: The complementary cumulative distribution function
of λ – Pr(λ ≥ x) – for K = d2 − 1 = 3 degrees of freedom,
corresponding to a qubit state. Red: the empirical worst-
case distribution, computed numerically. Green: The χ2

prediction, clearly a fatal underestimate. Blue: Eq. 5, a
loose but reliable upper bound. Purple: a more sophisticated
version of Eq. 5 requiring some number-crunching.

SIMPLICITY: The simple prescription given in Eq.
2 yields convex regions defined by level sets of an ef-
ficiently computable likelihood function. If an explicit
region is needed, R̂(D) can be efficiently described by
(i) sampling from its boundary, and (ii) computing its
minimum-volume bounding ellipsoid as O(d4) numbers.

Usually, however, R̂(D) can be used implicitly via con-
vex programming. Example: A convex program can find
the point ρ̂ that maximizes minρ∈R̂F (ρ̂, ρ), which yields
a guaranteed upper bound on the infidelity. But there
are easier ways to validate existing protocols. Region es-
timates can be used to design better protocols, tailored
to known errors and uncertainties. Example: each fault
tolerance protocol defines a “witness” hypersurface sep-
arating “good” states from “fail” states. Under certain
assumptions, a convex program can search for tailored
protocols that work for every ρ ∈ R̂.

LR regions also provide an elegant theoretical frame-
work for analyzing errors, in terms of the derivatives
of L(ρ) at its maximum (ρ̂MLE). When ρ̂MLE is full
rank, and ~∇L vanishes, confidence regions are ellipsoidal
and we recover the standard Fisher information. When
ρ̂MLE is rank-deficient, ~∇L 6= 0 and Fisher information
goes haywire. But the LR-region framework remains ro-
bust, and implies truncated-ellipsoid confidence regions
described by the first and second derivatives of L(ρ).
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