
Discrete simulations of continuous-time query algorithms

that are efficient with respect to queries, gates and space∗

Dominic Berry† Richard Cleve†,‡ Sevag Gharibian†

1 Statement of result

The continuous-time query model [3] can be thought of as a variant of the stardard query model, but where
arbitrarily small λ-fractional queries to the data x1x2 . . . xN ∈ {0, 1}N , of the form |j⟩ 7→ eiπλxj |j⟩, can be made
at cost only λ. In the limit as λ→ 0, such algorithms become continuous-time Hamiltonian evolution processes.

We show that any continuous-time quantum query algorithm whose total query time is T and whose driving
Hamiltonian is implementable with G 1- and 2-qubit gates (in a sense defined below) can be simulated by a
discrete-query quantum algorithm using the following resources:

• O(T log T/ log log T) queries

• O(T G polylogT) 1- and 2-qubit gates

• O(polylogT) qubits of space.

This extends a previous result [2] where the query cost is the same, but where the orders of the second and third
resource costs are at least T 2polylogT and TpolylogT respectively. The present result can also be compared
with the recent result [5] where the query cost is superior to ours, O(T) (which is asymptotically optimal),
but whose methodology does not (as far as we know) yield an efficient gate construction from an efficiently
implementable driving Hamiltonian.

Informally, a driving Hamiltonian H(t) is implementable with G gates if the following unitary operation UH

can be simulated with G gates. UH acts on three registers: a start time, a finish time, and a state. For any
start and finish times ts, tf ∈ [0, T] and any state |ψ⟩, UH |ts⟩|tf ⟩|ψ⟩ = |ts⟩|tf ⟩|ψ′⟩, where |ψ′⟩ is the state that
results when state |ψ⟩ evolves under H from time ts to time tf . (A technically complete definition, that specifies
matters of precision, is omitted from this abstract for reasons of space.)

2 Significance to quantum computation

These new bounds are useful in circumstances where abstract black-box query algorithms are translated into
concrete algorithms with subroutines substituted for the black-box queries. In these circumstances, what matters
most is the total gate complexity, which can be large if the cost of the operations performed between the queries is
large—even if the number of queries is small. An implication of our bound is that, whenever the implementation
cost of the driving Hamiltonian is small, the total gate complexity is not much more than the query complexity
times the cost of implementing each query.

For specific cases, such as the continuous-time quantum algorithm in [4] for AND-OR tree evaluation, a
very efficient discrete-time simulation is known [1]. The contribution of our approach is that it is systematic,
yeilding a gate-efficient discrete-query algorithm from any continuous-time query algorithm where the driving
Hamiltonian can be efficiently implemented.

∗Research supported by Canada’s NSERC, CIFAR, MITACS and the U.S. ARO.
†David R. Cheriton School of Computer Science and Institute for Quantum Computing, University of Waterloo.
‡Perimeter Institute for Theoretical Physics.

1

3 Sketch of technical contribution

In a nutshell, our result is obtained by simulating the construction in [2], but by representing some of the qubits
in a highly compressed form. This compressed form was known by the authors of [2], but it was not known that
all of the steps can be carried out within the compressed form—especially the measurement of control qubits.

The construction in [2] begins with a fractional query algorithm with total query cost T . This is partioned
into segments corresponding to time intervals of the form [t0, t0 + 1/4], and with m (≥ T) fractional queries of
size 1/4m in each such interval. In [2] it is shown that each such segment is simulated by a circuit of the form

|0⟩ R P

V1 V2 V3 Vk

R FE b1

|0⟩ R P R FE b2

|0⟩ R P R FE b3

|0⟩ R P R FE bm

Q Q Q Q

where k ∈ O(log(T/ε)) whose gates are as follows. On the first m qubits (that we refer to as the control qubits),

P =

(
1 0
0 i

)
, R =

(
cosϕ sinϕ
sinϕ − cosϕ

)
with ϕ ≈ 1/

√
8m. (1)

The gates labelled Q are the (full) queries. The gates V1, . . . , Vk are the unitaries corresponding to evolving the
driving Hamiltonian for various time intervals specified by the control qubits: V1 for the time interval from t0 to
the relative position of the first 1 in the control qubits; V2 for the time interval dilineated by the relative positions
of the first and second 1s in the control qubits; and so on. The simulation is successful if b1 = · · · = bm = 0,
which occurs with probability at least 3/4. ([2] shows how to cope with unsuccessful instances.)

The state of the control registers (sinϕ|0⟩+cosϕ|1⟩)⊗m is highly compressible in that most of its amplitude
is concentrated on basis states with low Hamming weight. A natural compressed representation of this state is
in terms of the positions of the 1s in binary. For example, |0000100010000100⟩ can be represented as |5⟩|9⟩|14⟩.
To simplify the exposition here, we assume that m is polynomial in T/ε so that the positions can be represented
using k ∈ O(log(T/ε)) qubits; however, the methodology works even if m is much larger (in that case, it suffices
to represent the positions of the 1s approximately, within precision polynomial in T/ε).

The stages of the above circuit can be simulated with the control qubits in compressed form as follows.

Initialization of the control qubits (R⊗m|0m⟩): The encoded qubits are initially in state |0k⟩⊗k. This is
first mapped to a state that is approximately2k−1∑

s1=0

sinϕ(cosϕ)s1 |s1⟩

2k−1∑
s2=0

sinϕ(cosϕ)s2 |s2⟩

 . . .

2k−1∑
sk=0

sinϕ(cosϕ)sk |sk⟩

 . (2)

Then a series of additions are performed: add the first k-qubit register to the second; add the second to the
third, etc. Intuitively, the reason why this works is a quantum analogue of the fact that the random variable
“position of the next 1” in a binomial distribution follows an exponential distribution.

Queries and driving operations: Our definition of driving Hamiltonian implementation cost fits perfectly
in this context. In the compressed representation, V1 is the implementation of the driving Hamiltonian with ts
hardwired to 0 and tf controlled by the first k-qubit register. V2 is the implementation of UH with ts controlled
by the first k-qubit register and tf controlled by the second k-qubit register, and so on.

Measurement of the control qubits (R⊗m and measure): What remains is to perform the final measure-
ment. This should logically correspond to what happens if the state is uncompressed to m qubits and then, for
each qubit, an R gate is applied and it is measured in the computational basis. However, this cannot be literally
implemented this way, because it would increase the gate and space usage to that in [2]; our task is to logically
perform this, but without uncompressing. In the compressed form, the measured registers would contain the
addresses of the 1s in the final measurement (with high probability, there are O(log(T/ε)) of them).

2

Our first observation is that we can perform an incomplete measurement that captures a seemingly small
part of what we are seeking: we can cause the state to either collapse to |0m⟩ or to the subspace that is the
orthogonal complement of this state—and with the correct probabilities. This is achieved by performing the
inverse of the initialization unitary and then the measurement that distinguishes between state |0k⟩⊗k and all
other states of these registers (but in this case remaining in coherent superposition of these other states).

Our idea is to complete the measurement by applying the above procedure recursively, on the two halves of
the logical string—where we are making use of the fact that the underlying operation that we are simulating has a
tensor product structure. We first explain what is being implemented in terms of the logical (uncompressed) data
and then how to implement it on the compressed data. The first step is to apply the incomplete measurement
on the m-qubit string. If the outcome is |0m⟩ then we halt with that outcome; otherwise, we consider the two
halves of the string and apply the same procedure. That is, we perform the procedure on the first m/2 qubits
that distinguishes them from |0m/2⟩ and then the same procedure again on the second m/2 qubits. Whenever
a collapse to a |0r⟩ state occurs, a branch of the measurement proccess ends; otherwise, we keep refining. Note
that, since the Hamming weight of the outcome is, with high probability, bounded by k ∈ O(log(T/ε)), at every
level of depth in the recursion there are at most k active branches.

Now we explain how to perform the above logical procedure on the compressed data. The main problem
is that, in compressed form, it is not clear how to extract the left half and the right half of an m-qubit string
without uncompressing the string. Our idea here is to use the following graduated compression scheme.

Graduated compression scheme: We first consider strings of Hamming weight up to 1, where the most
compressed form is to either store a special symbol “null”, which indicates that the string is all zeroes, or to store
the location of the 1 in binary. For example, for x = 0000000001000000, the compressed representation is 1001.
In intermediate compressed forms, the location of the 1 is represented partly by the placement of information
and partly by a binary string. Here is a series of intermediate compressed forms for x = 0000000001000000:

C4(x) = (1001)
C3(x) = (null, 001)
C2(x) = (null, null, 01, null)
C1(x) = (null, null, null, null, 1, null, null, null)

x = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0).

In C3(x), placement indicates that the 1 is in the second half, and similarly for C2(x) and C1(x).
It is straightforward to extend this compression scheme for Hamming weight up to k, by concatenating k

copies of it (one for each potential 1). It is easy to transform Cj(x) to Cj−1(x), though the length of the
encoding can approximately double by doing so. The advantage of encoding Cj−1(x) is that it contains the two
halves of the logical string in separate registers, each half in a compressed form. This is exactly what is required
to perform the logical operation described above. Whenever a logical outcome |0r⟩ is obtained, it need not be
represented as a quantum state. Hence, at most k2 ∈ O(log2(T/ε)) qubits are active during the process.

References

[1] A. Ambainis, A. M. Childs, B. W. Reichardt, R. Špalek, and S. Zhang, Any AND-OR formula of size N can
be evaluated in time N1/2+o(1) on a quantum computer, In Proc. 48th IEEE Symposium on Foundations
of Computer Science, pp. 363–372 (2007).

[2] R. Cleve, D. Gottesman, M. Mosca, R. Somma, and D. Yonge-Mallo, Efficient discrete-time simulations
of continuous-time quantum query algorithms, In Proc. 41st ACM Symposium on Theory of Computing,
pp. 409–416 (2009).

[3] E. Farhi and S. Gutmann, Analog analogue of a digital quantum computation, Physical Review A, 57:2403–
2406 (1998).

[4] E. Farhi, J. Goldstone, and S. Gutmann, A quantum algorithm for the Hamiltonian NAND tree, Theory
of Computing, 4(8):169–190 (2008).

[5] T. Lee, R. Mittal, B. W. Reichardt, R. Spalek, and M. Szegedy, Quantum query complexity of state
conversion, To appear in Proc. 52nd IEEE Symposium on Foundations of Computer Science (2011).
arXiv:1011.3020

3

