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Abstract

In this paper, we study variants of the canonical local hamiltonian problem where, in

addition, the witness is promised to be separable. We de�ne two variants of the local hamil-

tonian problem. The input for the separable local hamiltonian problem is the same as

the local hamiltonian problem, i.e. a local Hamiltonian and two energies a and b, but the

question is somewhat di�erent: the answer is yes if there is a separable quantum state with

energy at most a, and the answer is no if all separable quantum states have energy at least

b. The separable sparse hamiltonian problem is de�ned similarly, but the Hamiltonian is

not necessarily local, but rather sparse. We show that the separable sparse hamiltonian

problem is QMA(2)-complete, while separable local hamiltonian is in QMA. This should be

compared to the local hamiltonian problem, and the sparse hamiltonian problem which

are both QMA-complete. To the best of our knowledge, separable sparse hamiltonian is

the �rst non-trivial problem shown to be QMA(2)-complete.

1 Introduction and Results

1.1 Introduction

The class QMA is the the quantum analogue of the class NP (or more precisely, MA). The class
was �rst studied by Kitaev [KSV02], and has been in the focus since: see [AN02] for a survey, and
[Osb11] for a more recent physics-motivated review.

One of the striking results in proof systems is that sometimes, limiting the prover can increase
the power of the proof system. For example IP = PSPACE [LFKN92, Sha92], while MIP = NEXP

[BFL91]. This means that two classical provers can prove more languages to a veri�er if he has the
guarantee that the provers cannot communicate with each other. However, these classical examples
require interaction between the prover and the veri�er. The class QMA(k), introduced by Kobayashi
et al. [KMY03], deals with quantum non-interactive proofs and limits the prover to send k non-
entangled proofs, or equivalently consider k-unentangled provers that cannot communicate with
each other. The question whether QMA(k) = QMA(2) was answered in the a�rmative by Harrow
and Montanaro [HM10]. The question whether QMA(2) ⊆ QMA is still open. Note that in the
classical case, MA(k) = MA(2) = MA.
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To show the power of unentangled quantum proofs, Blier and Tapp [BT09] �rst presented a
QMA(2) protocol for an NP-complete problem with two quantum witnesses of size O(log(n)). The
drawback of this protocol is that the soundness parameter is somewhat disappointing (1 - Ω(1/n6)).
This was �rst improved by Beigi [Bei10] who showed that the soundness can be reduced to 1 −
1/n3+ε for any ε > 0. Very recently, Le Gall improved this soundness to 1 − Ω( 1

n log(n)) [LNN11].

Aaronson et al. showed that there exists a short proof for sat in QMA(Õ(
√
n)) [ABD+08], where

each unentangled witness has logarithmic size, but where the soundness can be exponentially small.
In [HM10] it was shown that sat ∈ QMA(2), where the size of each proof is Õ(

√
n). These results

tend to show that quantum unentangled proofs are very powerful, since they can solve NP-complete
problems in a seemingly more e�cient way than in QMA.

On the other hand, Brandão et al. [BCY11] showed that if the veri�er is restricted to performing
a Bell measurement, then the resulting class BELL-QMA(2) is equal to QMA. Trying to understand
the relationship between QMA and QMA(2) is a fundamental open problem from the point of view of
quantum complexity as well as for the understanding of the power of quantum unentangled proofs.

1.2 Contribution

In this paper, we study the relationship between QMA and QMA(2) from a di�erent perspective. We
study the local hamiltonian problem with unentangled witnesses. The k-local hamiltonian

problem is the quantum analog of max-k-sat, and is the canonical QMA-complete problem. The
�rst proof that k-local hamiltonian is QMA-complete is by Kitaev. Our �rst result is to extend
this construction to separable witnesses in order to �nd a complete problem for QMA(2). The
main ingredient in showing that the k-local hamiltonian problem is QMA-complete, is Kitaev's
Hamiltonian, a Hamiltonian which penalizes states that are not history states. History states are
states of the form |ηψ〉 ≡ 1√

T+1

∑T
t=0 |t〉 ⊗ |ψt〉, where |ψt〉 is the state at the t-th step of the

veri�cation process when starting with |ψ〉 and the the m ancilla qubits in 0 state, i.e. |ψt〉 =
UtUt−1 . . . U0(|0m〉 ⊗ |ψ〉), and Ui is the i-th gate used in the QMA veri�cation circuit, and we set
as a convention U0 = I.

It is natural to try to adapt this idea to a QMA(2) veri�cation circuit by constructing a separa-
ble local hamiltonian problem: the input for the separable local hamiltonian problem is
the same as the local hamiltonian problem, i.e. a collection of local Hamiltonians {H1, . . . ,Hm},
the answer is yes if there is a separable quantum state with energy at most a, and the answer is no
if all separable quantum states have energy at least b for some energies a < b. But there is a �aw
in this idea: even if |ψ〉 = |χA〉 ⊗ |χB〉, the history state |ηψ〉 might not be separable.

In order to resolve the entanglement issue in |ηψ〉, we use the construction of Harrow and
Montanaro [HM10]. They show that every QMA(k) veri�cation circuit can be transformed into a
QMA(2) circuit with the following structure: The �rst and second witnesses(which are promised
to be non-entangled) have the same length, where each witness contains r registers, where each
register size in the �rst and second witnesses is the same. The �rst r steps of the veri�cation
procedure are swap-tests between the i-th register of the �rst and second witnesses, and from
that point, the veri�cation circuit acts non-trivially only on the �rst witness. In a yes instance,
there exists a non-entangled proof, where |χA〉 = |χB〉 = |χ1〉 ⊗ |χ2〉 ⊗ . . . ⊗ |χr〉. Notice that
C − SWAP (|+〉 ⊗ |φ〉 ⊗ |φ〉) = |+〉 ⊗ |φ〉 ⊗ |φ〉, therefore, applying the swap-tests to the above
witnesses does not change the state. Since there are no other operations on the second witness, the
second witness remains �xed during the entire veri�cation process. If we treat the clock, ancilla
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qubits and the �rst witness as the A system, and the second witness as the B system, we get
that the history state |η〉 is indeed separable with respect to this division. This is only true if the
controlled swap operation is applied on all the qubits in the i-th register of the �rst and second
witnesses. This will make the propagation terms in Kitaev's Hamiltonian non-local. But, on the
other hand, a controlled swap operation on arbitrary number of qubits is always sparse: each row
has one non-zero entry. This makes each propagation term sparse.

Given a sparse Hamiltonian H, the unitary U = exp(−iHt) can be implemented e�ciently,
which eventually leads to separable sparse hamiltonian ∈ QMA(2). Together with the idea
above, it can be shown that:

Theorem 1. separable sparse hamiltonian is QMA(2)-complete.

The only reason why, this construction does not lead to a separable local hamiltonian

instance, is that the controlled swap gate must be performed in one step; otherwise, |η〉 would
become entangled. At �rst glance, this might seem as a technicality, but we surprisingly show that:

Theorem 2. separable local hamiltonian is QMA-complete.

Since the separable local hamiltonian problem is at least as hard as the local hamilto-
nian problem, and local hamiltonian is QMA-complete, therefore separable local hamil-

tonian is QMA-hard. To show that separable local hamiltonian ∈ QMA, we use the con-
sistency of local density matrices problem [Liu06] as a subroutine. Informally, the con-
sistency of local density matrices promise problem asks the following question: given a
collection of local density matrices ρi over a constant set of qubits Ci, is there a quantum state ρ
such that for each i, the reduced density matrix of ρ over the qubits Ci is equal to ρi? Liu showed
that this problem is QMA-complete.

To show that separable local hamiltonian is QMA-complete, we do as follows. Assume
that there exists a state σ = σA⊗σB of total length 2n, with energy below the threshold a. Let A,B
the two spaces of qubits considered, each of size n. The energy is tr(H(σA⊗σB)) where H =

∑
iHi.

Let Ci the subset of qubits each Hi act on. We have tr(H(σA ⊗ σB)) =
∑m

i=1 tr(Hiσ
Ci), where σCi

corresponds to the reduced state of σ on the qubits of Ci. Again, we can decompose σCi into the A
part and the B part. We can write σCi = σAi ⊗ σBi . This is because the state σ is a product state
between A and B, hence, the state σCi is also a product state between A and B.

The proof will consist of a classical part: the classical description of the reduced density matrices
σAi , σBi . This information is su�cient to calculate the energy classically, using tr(H(σA ⊗ σB)) =∑m

i=1 tr(Hi(σ
Ai⊗σBi)). The proof also consists of a quantum part: the prover tries to convince the

veri�er that there exists a quantum mixed state ρA and similarly for ρB that are consistent with
the reduced density matrices σAi and σBi . Since consistency of local density matrices is
known to be in QMA, the prover can convince the veri�er if there exists such a state, but cannot
fool the veri�er if there is no such state.

Discussion In the setting of QMA, both the local hamiltonian and the sparse hamilto-

nian are natural QMA-complete problems. When we consider separable witnesses, separable
local hamiltonian and separable sparse hamiltonian seem to be natural QMA(2)-complete

problem. Theorem 1 proves that separable sparse hamiltonian is indeed QMA(2)-complete, in
sharp contrast to the separable local hamiltonian problem, which is shown to be in QMA, by
Theorem 2.
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