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@ Input: A k-local Hamiltonian H = 3"y 45y hx
@ ||hx|| <1, Hermitian
e hy =0 forall |[X| > k (k-local)
@ Output ||cU(t)|1)||? for some simple state > and operator o
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e Evolution operator U(t) = exp(—iHt)

V.

Why is this interesting

@ Most modern questions in theoretical physics boil down to this

o Hubbard model for high T superconductivity
o Standard model for particle masses
@ Coulomb force for molecular binding energies

@ Large fraction of the world’s use of supercomputers

v
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Main idea: Trotter-Lie-Suzuki

exp(A+ B) = exp(A) exp(B) + O([A, B])

@ Use iteratively to express (§ = t/M)

oMt _ E f/Ht/M [He”hx‘;} +O(t - poly(N)/M)

@ Each term e~/ is a k-body unitary: efficient by Solovay-Kitaev
@ Generalizes to sparse Hamiltonians (not necessarily local)
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Introduction

Time dependent Hamiltonians

@ What if the Hamiltonian is time-dependent H(t) = "y hx(t)?
e Evolution operator 4 U(t) = —iH(t)U(t), U(t) = Te~'J HDA

hx (1)

¢
@ Ignore the time-dependence on each time interval ¢
U(t) ~ ... x g—i0H(25) o, gidH(3) o g—i6H(0)

@ The additional error is roughly ||0H/0t||6t per step.
@ Rapidly changing hamiltonians require smaller time intervals §

Complexity of the simulation depends on the smoothness of H(t) )
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Approximation ||U(t) — Hg”:1 e~ M) <

Complexity M < 3mAtky exp (ko2In ) with kg = |/ 3 10gp5 3 22
(For P — )

The complexity scales polynomially with the norm of the derivatives. )
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Physical intuition
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Decoupling principle
Physical intuition

You don’t need to understand quark confinement to predict the
spectrum of the hydrogen atom, even though it's made of quarks. ’

High energy Low energy

\‘. “ Mass
Charge
Spin

@ High-energy details are absorbed in a few effective parameters of
the low-energy model
@ Used in gadget hamiltonian perturbation theory for QMA

The dynamics of the system is largely insensitive to the high-energy )
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Frequency cutoff @ Frequency w drives transition
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Proof
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@ Integrate.

v
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Quantum algorithm
Randomized product formula

Time bins (exact)
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Quantum algorithm
Randomized product formula
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TefifOT H(t)dt _ Te—ifTT_é H(adt g g—i [2 H(t)dt o g J5 H(Hat

Remove time order (approximate)

HTef’fo5 H(Od! _ =i f3 H(’)‘”H < 2||H||?62, decoupling principle

Monte Carlo integral (approximate)

For t; g [0, 0], ‘

$ s H(tat = 55 H(p)|| < IH]) fr, whp.

Trotter decomposition (approximate)

e m ZR A 17 e i W < £ )H)P
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Quantum algorithm
In pictures
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@ U(t): simulate time evolution of H(%;) for randomly chosen t.
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Quantum algorithm
In pictures

t

@ U(t): simulate time evolution of H(%;) for randomly chosen t.
@ Randomness is necessary.

David Poulin (Sherbrooke)

Time-Dependent Hamiltonian Simulation

QIP 2011 13/17
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Application: The hollowness of Hilbert space

Variational states

@ Hilbert space is big.
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Application: The hollowness of Hilbert space

Variational states

@ Hilbert space is big.

@ Physical systems appear to occupy a tiny sub-manifold:
o Matrix product states and PEPS

Laughlin state for fractional quantum Hall liquids

BCS state for superconductivity

etc.

Proposed definition: physical state of quantum many-body system

A state that can be reached in polynomial time, starting from a fiducial
state (e.g. all up), under arbitrary local time-dependent Hamiltonian.
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Application: The hollowness of Hilbert space
How many physical states?
@ A direct counting argument appears difficult because H(t) can
vary arbitrarily wildly.
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Corollary to our result
Vol(physical states) < # poly-size quantum circuits x Vol(e ball)

Number of quantum circuits Number of quantum states

@ M = finite gate set @ Size of H = Vol(2K+! — 1 sphere)
@ K = number of qubits
@ o = degree sim. poly
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Vol(physical states) < # poly-size quantum circuits x Vol(e ball)

Number of quantum circuits
@ M = finite gate set @ Size of H = Vol(2K+! — 1 sphere)
@ K = number of qubits @ Vol(e ball) = Vol(2X+! — 2 sphere)
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Application: The hollowness of Hilbert space
How many physical states?
@ A direct counting argument appears difficult because H(t) can
vary arbitrarily wildly.

Corollary to our result
Vol(physical states) < # poly-size quantum circuits x Vol(e ball)

Number of quantum circuits
@ M = finite gate set @ Size of H = Vol(2K+! — 1 sphere)
@ K = number of qubits @ Vol(e ball) = Vol(2X+! — 2 sphere)
@ o = degree sim. poly

Ne < (IM|K?)K*

Number of quantum states

Vol(Physical states)
Vol( States)

€ O(KKE J
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Conclusion
Summary

@ Folklore (in physics): High frequency fluctuations don’t affect the
low energy physics.
e We have demonstrated this rigorously for the class of k-local
Hamiltonians.
@ Corollary: Using randomness, it is possible to efficiently simulate
k-local bounded Hamiltonians with arbitrary time-dependence.
@ Previous techniques had complexity scaling with the inverse
fluctuation time-scale of the system.
@ Folklore (in this community): Most states in Hilbert space are
inaccessible.
e Proved this for dynamics generated by arbitrary k-local Hamiltonian.
o Physically well motivated.
e This includes the standard quantum circuit model.
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