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Introduction

The simulations problem

Statement of the problem

Input: A k -local Hamiltonian H =
∑

X⊂{1,2,...N} hX

‖hX‖ ≤ 1, Hermitian
hX = 0 for all |X | > k (k -local)

Output ‖σU(t)|ψ〉‖2 for some simple state ψ and operator σ
(E.g. |ψ〉 = |0〉 and σ = σz

1)
Evolution operator U(t) = exp(−iHt)

Why is this interesting
Most modern questions in theoretical physics boil down to this

Hubbard model for high TC superconductivity
Standard model for particle masses
Coulomb force for molecular binding energies

Large fraction of the world’s use of supercomputers
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Introduction

Quantum simulations

This problem can easily be solved by a quantum computer...

... this was one of the original motivation to build one.

Main idea: Trotter-Lie-Suzuki

exp(A + B) = exp(A) exp(B) +O([A,B])

Use iteratively to express (δ = t/M)

e−iHt =
[
e−iHt/M]M =

[∏
X

e−ihX δ
]M

+O(t · poly(N)/M)

Each term e−ihX δ is a k -body unitary: efficient by Solovay-Kitaev
Generalizes to sparse Hamiltonians (not necessarily local)
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Introduction

Time dependent Hamiltonians

What if the Hamiltonian is time-dependent H(t) =
∑

X hX (t)?
Evolution operator d

dt U(t) = −iH(t)U(t), U(t) = T e−i
∫

H(t)dt

h
X

(t
)

t

Ignore the time-dependence on each time interval δ

U(t) ≈ . . .× e−iδH(2δ) × e−iδH(δ) × e−iδH(0)

The additional error is roughly ‖∂H/∂t‖δt per step.
Rapidly changing hamiltonians require smaller time intervals δ

Complexity of the simulation depends on the smoothness of H(t)
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Introduction

Is this the best that can be done?

Wiebe, Berry, Høyer, and Sanders 2010 :

The {hX} are P-Λ-Smooth

sup
p∈{1,2,...,P},t

[∑
X

∥∥∥ dp

dtp hX (t)
∥∥∥]1/(p+1)

≤ Λ

Approximation ‖U(t)−
∏M

q=1 e−ihXq (tq)δq‖ ≤ ε

Complexity M ≤ 3mΛtk0 exp
(
k02 ln 25

3

)
with k0 =

√
1
2 log25/3

Λδ
ε

(For P →∞)

The complexity scales polynomially with the norm of the derivatives.
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Decoupling principle

Physical intuition

You don’t need to understand quark confinement to predict the
spectrum of the hydrogen atom, even though it’s made of quarks.

High-energy details are absorbed in a few effective parameters of
the low-energy model
Used in gadget hamiltonian perturbation theory for QMA

The dynamics of the system is largely insensitive to the high-energy
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Decoupling principle

Effective Hamiltonian

Frequency cutoff

H(t) =
∫∞

0 J(ω)eiωtdω

H̃(t) =
∫ Γ

0 J(ω)eiωtdω

Frequency ω drives transition
E → E + ω.
If Γ� ‖H‖, don’t loose
anything

Theorem

Smooth cutoff H̃(t) =
∫
χσ(t − t ′)H(t ′)dt ′

Evolutions ‖U(t)− Ũ(t)‖ ≤ 2‖H‖2t
√

2
πσ

Proof

X (t) = I − U†(t)Ũ(t)
Ẋ (t) = −iU†(t)∆H(t)Ũ(t)
X (0) = 0

X (t) =
∫ t

0 Ẋ (t ′)dt ′

Schrödinger’ equation⇒
‖U(t)− U(t ′)‖ ≤ |t − t ′| · ‖H‖
Integrate.
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X (0) = 0

X (t) =
∫ t

0 Ẋ (t ′)dt ′

Schrödinger’ equation⇒
‖U(t)− U(t ′)‖ ≤ |t − t ′| · ‖H‖
Integrate.
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X (0) = 0

X (t) =
∫ t
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√

2
πσ

Proof

X (t) = I − U†(t)Ũ(t)
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Quantum algorithm

Randomized product formula

Time bins (exact)

T e−i
∫ T

0 H(t)dt = T e−i
∫ T

T−δ H(t)dt . . . T e−i
∫ 2δ
δ H(t)dt × T e−i

∫ δ
0 H(t)dt

Remove time order (approximate)∥∥∥T e−i
∫ δ

0 H(t)dt − e−i
∫ δ

0 H(t)dt
∥∥∥ ≤ 2‖H‖2δ2, decoupling principle

Monte Carlo integral (approximate)

For tj ∈R [0, δ],
∥∥∥1
δ

∫ δ
0 H(t)dt − 1

m
∑m

j=1 H(tj)
∥∥∥ ≤ ‖H‖ δ√

m , w.h.p.

Trotter decomposition (approximate)∥∥∥e−i δ
m
∑m

j=1 H(tj ) −
∏m

j=1 e−i δ
m H(tj )

∥∥∥ ≤ δ2

m ‖H‖
2
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Quantum algorithm

In pictures
h

X
(t

)

t
U(t): simulate time evolution of H(tj) for randomly chosen tj .
Randomness is necessary.

David Poulin (Sherbrooke) Time-Dependent Hamiltonian Simulation QIP 2011 13 / 17



Quantum algorithm

In pictures
h

X
(t

)

t
U(t): simulate time evolution of H(tj) for randomly chosen tj .
Randomness is necessary.

David Poulin (Sherbrooke) Time-Dependent Hamiltonian Simulation QIP 2011 13 / 17



Quantum algorithm

In pictures
h

X
(t

)

t
U(t): simulate time evolution of H(tj) for randomly chosen tj .
Randomness is necessary.

David Poulin (Sherbrooke) Time-Dependent Hamiltonian Simulation QIP 2011 13 / 17



Quantum algorithm

In pictures
h

X
(t

)

t
U(t): simulate time evolution of H(tj) for randomly chosen tj .
Randomness is necessary.

David Poulin (Sherbrooke) Time-Dependent Hamiltonian Simulation QIP 2011 13 / 17



Quantum algorithm

In pictures
h

X
(t

)

t
U(t): simulate time evolution of H(tj) for randomly chosen tj .
Randomness is necessary.

David Poulin (Sherbrooke) Time-Dependent Hamiltonian Simulation QIP 2011 13 / 17



Quantum algorithm

In pictures
h

X
(t

)

t
U(t): simulate time evolution of H(tj) for randomly chosen tj .
Randomness is necessary.

David Poulin (Sherbrooke) Time-Dependent Hamiltonian Simulation QIP 2011 13 / 17



Application: The hollowness of Hilbert space
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Application: The hollowness of Hilbert space

Variational states

Hilbert space is big.
Physical systems appear to occupy a tiny sub-manifold:

Matrix product states and PEPS
Laughlin state for fractional quantum Hall liquids
BCS state for superconductivity
etc.

Proposed definition: physical state of quantum many-body system
A state that can be reached in polynomial time, starting from a fiducial
state (e.g. all up), under arbitrary local time-dependent Hamiltonian.
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Application: The hollowness of Hilbert space

How many physical states?

A direct counting argument appears difficult because H(t) can
vary arbitrarily wildly.

Corollary to our result
Vol(physical states) ≤ # poly-size quantum circuits × Vol(ε ball)

Number of quantum circuits
M = finite gate set
K = number of qubits
α = degree sim. poly

NC ≤ (|M|K 2)Kα

Number of quantum states

Size of H = Vol(2K +1 − 1 sphere)
Vol(ε ball) = Vol(2K +1 − 2 sphere)

Vol(Physical states)

Vol(States)
∈ O(K K ε2

k
)
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Conclusion

Summary

Folklore (in physics): High frequency fluctuations don’t affect the
low energy physics.

We have demonstrated this rigorously for the class of k -local
Hamiltonians.

Corollary: Using randomness, it is possible to efficiently simulate
k -local bounded Hamiltonians with arbitrary time-dependence.

Previous techniques had complexity scaling with the inverse
fluctuation time-scale of the system.

Folklore (in this community): Most states in Hilbert space are
inaccessible.

Proved this for dynamics generated by arbitrary k -local Hamiltonian.
Physically well motivated.
This includes the standard quantum circuit model.
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inaccessible.

Proved this for dynamics generated by arbitrary k -local Hamiltonian.
Physically well motivated.
This includes the standard quantum circuit model.
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