Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space

David Poulin

Département de Physique Université de Sherbrooke

Joint work with: Angie Quarry, Rolando Somma, and Frank Verstraete

14th Workshop on Quantum Information Processing Singapore, January 2011

- 2 Decoupling principle
- Quantum algorithm
- Application: The hollowness of Hilbert space

Outline

- 2 Decoupling principle
- 3 Quantum algorithm
- 4 Application: The hollowness of Hilbert space

The simulations problem

Statement of the problem

• Input: A *k*-local Hamiltonian $H = \sum_{X \subset \{1,2,\dots,N\}} h_X$

• $||h_X|| \leq 1$, Hermitian

• *h*_{*X*} = 0 for all |*X*| > *k* (*k*-local)

 Output ||σU(t)|ψ⟩||² for some simple state ψ and operator σ (E.g. |ψ⟩ = |0⟩ and σ = σ₁^z)

• Evolution operator $U(t) = \exp(-iHt)$

Why is this interesting

- Hubbard model for high *T_C* superconductivity
- Standard model for particle masses
- Coulomb force for molecular binding energies
- Large fraction of the world's use of supercomputers

The simulations problem

Statement of the problem

• Input: A *k*-local Hamiltonian $H = \sum_{X \subset \{1,2,\dots,N\}} h_X$

- $||h_X|| \leq 1$, Hermitian
- *h*_X = 0 for all |*X*| > *k* (*k*-local)
- Output ||σU(t)|ψ⟩||² for some simple state ψ and operator σ (E.g. |ψ⟩ = |0⟩ and σ = σ₁^z)
 - Evolution operator $U(t) = \exp(-iHt)$

Why is this interesting

- Hubbard model for high *T_C* superconductivity
- Standard model for particle masses
- Coulomb force for molecular binding energies
- Large fraction of the world's use of supercomputers

The simulations problem

Statement of the problem

• Input: A *k*-local Hamiltonian $H = \sum_{X \subset \{1,2,\dots,N\}} h_X$

- $||h_X|| \leq 1$, Hermitian
- *h*_{*X*} = 0 for all |*X*| > *k* (*k*-local)
- Output ||σU(t)|ψ⟩||² for some simple state ψ and operator σ (E.g. |ψ⟩ = |0⟩ and σ = σ₁^z)

• Evolution operator $U(t) = \exp(-iHt)$

Why is this interesting

- Hubbard model for high *T_C* superconductivity
- Standard model for particle masses
- Coulomb force for molecular binding energies
- Large fraction of the world's use of supercomputers

The simulations problem

Statement of the problem

• Input: A *k*-local Hamiltonian $H = \sum_{X \subset \{1,2,...N\}} h_X$

- $||h_X|| \leq 1$, Hermitian
- *h*_{*X*} = 0 for all |*X*| > *k* (*k*-local)

• Output $\|\sigma U(t)|\psi\rangle\|^2$ for some simple state ψ and operator σ (E.g. $|\psi\rangle = |0\rangle$ and $\sigma = \sigma_1^2$)

• Evolution operator $U(t) = \exp(-iHt)$

Why is this interesting

- Hubbard model for high *T_C* superconductivity
- Standard model for particle masses
- Coulomb force for molecular binding energies
- Large fraction of the world's use of supercomputers

The simulations problem

Statement of the problem

• Input: A *k*-local Hamiltonian $H = \sum_{X \subset \{1,2,\dots,N\}} h_X$

- $||h_X|| \leq 1$, Hermitian
- $h_X = 0$ for all |X| > k (k-local)
- Output $\|\sigma U(t)|\psi\rangle\|^2$ for some simple state ψ and operator σ (E.g. $|\psi\rangle = |0\rangle$ and $\sigma = \sigma_1^2$)
 - Evolution operator $U(t) = \exp(-iHt)$

Why is this interesting

- Hubbard model for high *T_C* superconductivity
- Standard model for particle masses
- Coulomb force for molecular binding energies
- Large fraction of the world's use of supercomputers

The simulations problem

Statement of the problem

• Input: A *k*-local Hamiltonian $H = \sum_{X \subset \{1,2,...N\}} h_X$

•
$$||h_X|| \leq 1$$
, Hermitian

•
$$h_X = 0$$
 for all $|X| > k$ (k-local)

• Output $\|\sigma U(t)|\psi\rangle\|^2$ for some simple state ψ and operator σ (E.g. $|\psi\rangle = |0\rangle$ and $\sigma = \sigma_1^2$)

• Evolution operator $U(t) = \exp(-iHt)$

Why is this interesting

- Hubbard model for high T_C superconductivity
- Standard model for particle masses
- Coulomb force for molecular binding energies
- Large fraction of the world's use of supercomputers

The simulations problem

Statement of the problem

• Input: A *k*-local Hamiltonian $H = \sum_{X \subset \{1,2,...N\}} h_X$

•
$$||h_X|| \leq 1$$
, Hermitian

•
$$h_X = 0$$
 for all $|X| > k$ (k-local)

• Output $\|\sigma U(t)|\psi\rangle\|^2$ for some simple state ψ and operator σ (E.g. $|\psi\rangle = |0\rangle$ and $\sigma = \sigma_1^2$)

• Evolution operator $U(t) = \exp(-iHt)$

Why is this interesting

Most modern questions in theoretical physics boil down to this

- Hubbard model for high T_C superconductivity
- Standard model for particle masses
- Coulomb force for molecular binding energies

• Large fraction of the world's use of supercomputers

The simulations problem

Statement of the problem

• Input: A *k*-local Hamiltonian $H = \sum_{X \subset \{1,2,...N\}} h_X$

•
$$||h_X|| \leq 1$$
, Hermitian

•
$$h_X = 0$$
 for all $|X| > k$ (k-local)

• Output $\|\sigma U(t)|\psi\rangle\|^2$ for some simple state ψ and operator σ (E.g. $|\psi\rangle = |0\rangle$ and $\sigma = \sigma_1^2$)

• Evolution operator $U(t) = \exp(-iHt)$

Why is this interesting

- Hubbard model for high T_C superconductivity
- Standard model for particle masses
- Coulomb force for molecular binding energies
- Large fraction of the world's use of supercomputers

The simulations problem

Statement of the problem

• Input: A *k*-local Hamiltonian $H = \sum_{X \subset \{1,2,...N\}} h_X$

•
$$||h_X|| \leq 1$$
, Hermitian

• *h*_{*X*} = 0 for all |*X*| > *k* (*k*-local)

• Output $\|\sigma U(t)|\psi\rangle\|^2$ for some simple state ψ and operator σ (E.g. $|\psi\rangle = |0\rangle$ and $\sigma = \sigma_1^2$)

• Evolution operator $U(t) = \exp(-iHt)$

Why is this interesting

Most modern questions in theoretical physics boil down to this

- Hubbard model for high T_C superconductivity
- Standard model for particle masses
- Coulomb force for molecular binding energies

Large fraction of the world's use of supercomputers

The simulations problem

Statement of the problem

• Input: A *k*-local Hamiltonian $H = \sum_{X \subset \{1,2,\dots,N\}} h_X$

•
$$||h_X|| \leq 1$$
, Hermitian

•
$$h_X = 0$$
 for all $|X| > k$ (k-local)

• Output $\|\sigma U(t)|\psi\rangle\|^2$ for some simple state ψ and operator σ (E.g. $|\psi\rangle = |0\rangle$ and $\sigma = \sigma_1^2$)

• Evolution operator $U(t) = \exp(-iHt)$

Why is this interesting

Most modern questions in theoretical physics boil down to this

- Hubbard model for high T_C superconductivity
- Standard model for particle masses
- Coulomb force for molecular binding energies

Large fraction of the world's use of supercomputers

The simulations problem

Statement of the problem

• Input: A *k*-local Hamiltonian $H = \sum_{X \subset \{1,2,...N\}} h_X$

•
$$||h_X|| \leq 1$$
, Hermitian

•
$$h_X = 0$$
 for all $|X| > k$ (k-local)

• Output $\|\sigma U(t)|\psi\rangle\|^2$ for some simple state ψ and operator σ (E.g. $|\psi\rangle = |0\rangle$ and $\sigma = \sigma_1^2$)

• Evolution operator
$$U(t) = \exp(-iHt)$$

Why is this interesting

- Hubbard model for high T_C superconductivity
- Standard model for particle masses
- Coulomb force for molecular binding energies
- Large fraction of the world's use of supercomputers

Quantum simulations

This problem can easily be solved by a quantum computer...

... this was one of the original motivation to build one.

Main idea: Trotter-Lie-Suzuki

$$\exp(A+B) = \exp(A)\exp(B) + \mathcal{O}([A,B])$$

• Use iteratively to express ($\delta = t/M$)

$$e^{-iHt} = \left[e^{-iHt/M}\right]^M = \left[\prod_{\chi} e^{-ih_{\chi}\delta}\right]^M + \mathcal{O}(t \cdot poly(N)/M)$$

Each term e^{-ih_xδ} is a k-body unitary: efficient by Solovay-Kitaev
Generalizes to sparse Hamiltonians (not necessarily local)

David Poulin (Sherbrooke)

Quantum simulations

This problem can easily be solved by a quantum computer...

... this was one of the original motivation to build one.

Main idea: Trotter-Lie-Suzuki

$$\exp(A+B) = \exp(A)\exp(B) + \mathcal{O}([A,B])$$

• Use iteratively to express ($\delta = t/M$)

$$e^{-iHt} = \left[e^{-iHt/M}\right]^M = \left[\prod_{\chi} e^{-ih_{\chi}\delta}\right]^M + \mathcal{O}(t \cdot poly(N)/M)$$

Each term e^{-ih_xδ} is a k-body unitary: efficient by Solovay-Kitaev
Generalizes to sparse Hamiltonians (not necessarily local)

David Poulin (Sherbrooke)

Quantum simulations

This problem can easily be solved by a quantum computer...

... this was one of the original motivation to build one.

Main idea: Trotter-Lie-Suzuki

 $\exp(A+B) = \exp(A)\exp(B) + \mathcal{O}([A,B])$

• Use iteratively to express ($\delta = t/M$)

$$e^{-iHt} = \left[e^{-iHt/M}\right]^M = \left[\prod_{\chi} e^{-ih_{\chi}\delta}\right]^M + \mathcal{O}(t \cdot poly(N)/M)$$

Each term e^{-ih_xδ} is a k-body unitary: efficient by Solovay-Kitaev
Generalizes to sparse Hamiltonians (not necessarily local)

David Poulin (Sherbrooke)

Quantum simulations

This problem can easily be solved by a quantum computer...

... this was one of the original motivation to build one.

Main idea: Trotter-Lie-Suzuki

 $\exp(A+B) = \exp(A)\exp(B) + \mathcal{O}([A,B])$

• Use iteratively to express ($\delta = t/M$)

$$e^{-iHt} = \left[e^{-iHt/M}\right]^M = \left[\prod_{X} e^{-ih_X\delta}\right]^M + \mathcal{O}(t \cdot poly(N)/M)$$

Each term e^{-ih_xδ} is a k-body unitary: efficient by Solovay-Kitaev
Generalizes to sparse Hamiltonians (not necessarily local)

David Poulin (Sherbrooke)

Quantum simulations

This problem can easily be solved by a quantum computer...

... this was one of the original motivation to build one.

Main idea: Trotter-Lie-Suzuki

$$\exp(A+B) = \exp(A)\exp(B) + \mathcal{O}([A,B])$$

• Use iteratively to express ($\delta = t/M$)

$$e^{-iHt} = \left[e^{-iHt/M}\right]^M = \left[\prod_{X} e^{-ih_X\delta}\right]^M + \mathcal{O}(t \cdot poly(N)/M)$$

Each term e^{-ih_xδ} is a k-body unitary: efficient by Solovay-Kitaev
Generalizes to sparse Hamiltonians (not necessarily local)

David Poulin (Sherbrooke)

Quantum simulations

This problem can easily be solved by a quantum computer...

... this was one of the original motivation to build one.

Main idea: Trotter-Lie-Suzuki

 $\exp(A+B) = \exp(A)\exp(B) + \mathcal{O}([A,B])$

• Use iteratively to express ($\delta = t/M$)

$$e^{-iHt} = \left[e^{-iHt/M}
ight]^M = \left[\prod_{\chi} e^{-ih_{\chi}\delta}
ight]^M + \mathcal{O}(t \cdot poly(N)/M)$$

Each term e^{-ih_xδ} is a k-body unitary: efficient by Solovay-Kitaev
Generalizes to sparse Hamiltonians (not necessarily local)

David Poulin (Sherbrooke)

Quantum simulations

This problem can easily be solved by a quantum computer...

... this was one of the original motivation to build one.

Main idea: Trotter-Lie-Suzuki

$$\exp(A+B) = \exp(A)\exp(B) + \mathcal{O}([A,B])$$

• Use iteratively to express ($\delta = t/M$)

$$e^{-iHt} = \left[e^{-iHt/M}\right]^M = \left[\prod_{X} e^{-ih_X\delta}\right]^M + \mathcal{O}(t \cdot poly(N)/M)$$

Each term e^{-ih_xδ} is a k-body unitary: efficient by Solovay-Kitaev
Generalizes to sparse Hamiltonians (not necessarily local)

David Poulin (Sherbrooke)

Quantum simulations

This problem can easily be solved by a quantum computer...

... this was one of the original motivation to build one.

Main idea: Trotter-Lie-Suzuki

$$\exp(A+B) = \exp(A)\exp(B) + \mathcal{O}([A,B])$$

• Use iteratively to express ($\delta = t/M$)

$$\boldsymbol{e}^{-iHt} = \left[\boldsymbol{e}^{-iHt/M}\right]^M = \left[\prod_{\boldsymbol{X}} \boldsymbol{e}^{-ih_{\boldsymbol{X}}\delta}\right]^M + \mathcal{O}(t \cdot \operatorname{poly}(N)/M)$$

Each term e^{-ih_xδ} is a k-body unitary: efficient by Solovay-Kitaev
Generalizes to sparse Hamiltonians (not necessarily local)

David Poulin (Sherbrooke)

Quantum simulations

This problem can easily be solved by a quantum computer...

... this was one of the original motivation to build one.

Main idea: Trotter-Lie-Suzuki

$$\exp(A+B) = \exp(A)\exp(B) + \mathcal{O}([A,B])$$

• Use iteratively to express ($\delta = t/M$)

$$e^{-iHt} = \left[e^{-iHt/M}
ight]^M = \left[\prod_{\chi} e^{-ih_{\chi}\delta}
ight]^M + \mathcal{O}(t \cdot poly(N)/M)$$

Each term e^{-ih_Xδ} is a k-body unitary: efficient by Solovay-Kitaev
Generalizes to sparse Hamiltonians (not necessarily local)

David Poulin (Sherbrooke)

What if the Hamiltonian is time-dependent H(t) = ∑_X h_X(t)?
 Evolution operator ^d/_{dt} U(t) = −iH(t)U(t), U(t) = Te^{-i ∫ H(t)dt}

• Ignore the time-dependence on each time interval δ

 $U(t) \approx \ldots \times e^{-i\delta H(2\delta)} \times e^{-i\delta H(\delta)} \times e^{-i\delta H(0)}$

The additional error is roughly ||∂H/∂t||δt per step.
Rapidly changing hamiltonians require smaller time intervals δ

Complexity of the simulation depends on the smoothness of H(t)

David Poulin (Sherbrooke)

- What if the Hamiltonian is time-dependent $H(t) = \sum_{X} h_X(t)$?
- Evolution operator $\frac{d}{dt}U(t) = -iH(t)U(t), U(t) = \mathcal{T}e^{-i\int H(t)dt}$

• Ignore the time-dependence on each time interval δ

 $U(t) \approx \ldots \times e^{-i\delta H(2\delta)} \times e^{-i\delta H(\delta)} \times e^{-i\delta H(0)}$

The additional error is roughly ||∂H/∂t||δt per step.
Rapidly changing hamiltonians require smaller time intervals δ

Complexity of the simulation depends on the smoothness of H(t)

David Poulin (Sherbrooke)

- What if the Hamiltonian is time-dependent $H(t) = \sum_{X} h_X(t)$?
- Evolution operator $\frac{d}{dt}U(t) = -iH(t)U(t), U(t) = \mathcal{T}e^{-i\int H(t)dt}$

• Ignore the time-dependence on each time interval δ $U(t) \approx \ldots \times e^{-i\delta H(2\delta)} \times e^{-i\delta H(\delta)} \times e^{-i\delta H(0)}$

The additional error is roughly ||∂H/∂t||δt per step.
Rapidly changing hamiltonians require smaller time intervals δ

- What if the Hamiltonian is time-dependent $H(t) = \sum_{X} h_X(t)$?
- Evolution operator $\frac{d}{dt}U(t) = -iH(t)U(t), U(t) = \mathcal{T}e^{-i\int H(t)dt}$

• Ignore the time-dependence on each time interval $\boldsymbol{\delta}$

 $U(t) \approx \ldots \times e^{-i\delta H(2\delta)} \times e^{-i\delta H(\delta)} \times e^{-i\delta H(0)}$

The additional error is roughly ||∂H/∂t||δt per step.
Rapidly changing hamiltonians require smaller time intervals

- What if the Hamiltonian is time-dependent $H(t) = \sum_{X} h_X(t)$?
- Evolution operator $\frac{d}{dt}U(t) = -iH(t)U(t), U(t) = \mathcal{T}e^{-i\int H(t)dt}$

• Ignore the time-dependence on each time interval δ

 $U(t) \approx \ldots \times e^{-i\delta H(2\delta)} \times e^{-i\delta H(\delta)} \times e^{-i\delta H(0)}$

- The additional error is roughly $\|\partial H/\partial t\|\delta t$ per step.
- Rapidly changing hamiltonians require smaller time intervals δ

- What if the Hamiltonian is time-dependent $H(t) = \sum_{X} h_X(t)$?
- Evolution operator $\frac{d}{dt}U(t) = -iH(t)U(t), U(t) = \mathcal{T}e^{-i\int H(t)dt}$

• Ignore the time-dependence on each time interval $\boldsymbol{\delta}$

 $U(t) \approx \ldots \times e^{-i\delta H(2\delta)} \times e^{-i\delta H(\delta)} \times e^{-i\delta H(0)}$

- The additional error is roughly $\|\partial H/\partial t\|\delta t$ per step.
- Rapidly changing hamiltonians require smaller time intervals δ

- What if the Hamiltonian is time-dependent $H(t) = \sum_{X} h_X(t)$?
- Evolution operator $\frac{d}{dt}U(t) = -iH(t)U(t), U(t) = \mathcal{T}e^{-i\int H(t)dt}$

• Ignore the time-dependence on each time interval δ

 $U(t) \approx \ldots \times e^{-i\delta H(2\delta)} \times e^{-i\delta H(\delta)} \times e^{-i\delta H(0)}$

- The additional error is roughly $\|\partial H/\partial t\|\delta t$ per step.
- Rapidly changing hamiltonians require smaller time intervals δ

Complexity of the simulation depends on the smoothness of H(t)

David Poulin (Sherbrooke)

Wiebe, Berry, Høyer, and Sanders 2010 :

The {
$$h_X$$
} are *P*- Λ -Smooth

$$\sup_{p \in \{1,2,...,P\},t} \left[\sum_X \left\| \frac{d^p}{dt^p} h_X(t) \right\| \right]^{1/(p+1)} \le \Lambda$$

Approximation $\|U(t) - \prod_{q=1}^{M} e^{-ih_{\chi_q}(t_q)\delta_q}\| \le \epsilon$

Complexity $M \leq 3m \wedge tk_0 \exp\left(k_0 2 \ln \frac{25}{3}\right)$ with $k_0 = \sqrt{\frac{1}{2} \log_{25/3} \frac{\Lambda \delta}{\epsilon}}$ (For $P \to \infty$)

Introduction

Wiebe, Berry, Høyer, and Sanders 2010 :

The {*h_X*} are *P*-Λ-Smooth

$$\sup_{p \in \{1,2,...,P\},t} \left[\sum_{X} \left\| \frac{d^{p}}{dt^{p}} h_{X}(t) \right\| \right]^{1/(p+1)} \leq \Lambda$$

Approximation
$$\|U(t) - \prod_{q=1}^{M} e^{-ih_{X_q}(t_q)\delta_q}\| \le \epsilon$$

Complexity $M \leq 3m \wedge tk_0 \exp\left(k_0 2 \ln \frac{25}{3}\right)$ with $k_0 = \sqrt{\frac{1}{2} \log_{25/3} \frac{\Lambda \delta}{\epsilon}}$ (For $P \to \infty$)

Introduction

Wiebe, Berry, Høyer, and Sanders 2010 :

The {*h*_X} are *P*-Λ-Smooth

$$\sup_{p \in \{1,2,...,P\},t} \left[\sum_{X} \left\| \frac{d^{p}}{dt^{p}} h_{X}(t) \right\| \right]^{1/(p+1)} \leq \Lambda$$

Approximation
$$\|U(t) - \prod_{q=1}^{M} e^{-ih_{X_q}(t_q)\delta_q}\| \le \epsilon$$

Complexity
$$M \leq 3m \wedge tk_0 \exp\left(k_0 2 \ln \frac{25}{3}\right)$$
 with $k_0 = \sqrt{\frac{1}{2} \log_{25/3} \frac{\Lambda \delta}{\epsilon}}$
(For $P \to \infty$)

Introduction

Wiebe, Berry, Høyer, and Sanders 2010 :

The {*h_X*} are *P*-Λ-Smooth

$$\sup_{p \in \{1,2,...,P\},t} \left[\sum_{X} \left\| \frac{d^{p}}{dt^{p}} h_{X}(t) \right\| \right]^{1/(p+1)} \leq \Lambda$$

Approximation
$$\|U(t) - \prod_{q=1}^{M} e^{-ih_{\chi_q}(t_q)\delta_q}\| \le \epsilon$$

Complexity
$$M \leq 3m \wedge tk_0 \exp\left(k_0 2 \ln \frac{25}{3}\right)$$
 with $k_0 = \sqrt{\frac{1}{2} \log_{25/3} \frac{\Lambda \delta}{\epsilon}}$
(For $P \to \infty$)

Introduction

Outline

- 3 Quantum algorithm
- 4 Application: The hollowness of Hilbert space

Physical intuition

You don't need to understand quark confinement to predict the spectrum of the hydrogen atom, even though it's made of quarks.

- High-energy details are absorbed in a few effective parameters of the low-energy model
- Used in gadget hamiltonian perturbation theory for QMA

The dynamics of the system is largely insensitive to the high-energy

David Poulin (Sherbrooke)
You don't need to understand quark confinement to predict the spectrum of the hydrogen atom, even though it's made of quarks.

 High-energy details are absorbed in a few effective parameters of the low-energy model

Used in gadget hamiltonian perturbation theory for QMA

The dynamics of the system is largely insensitive to the high-energy

You don't need to understand quark confinement to predict the spectrum of the hydrogen atom, even though it's made of quarks.

 High-energy details are absorbed in a few effective parameters of the low-energy model

Used in gadget hamiltonian perturbation theory for QMA

The dynamics of the system is largely insensitive to the high-energy

You don't need to understand quark confinement to predict the spectrum of the hydrogen atom, even though it's made of quarks.

- High-energy details are absorbed in a few effective parameters of the low-energy model
- Used in gadget hamiltonian perturbation theory for QMA

The dynamics of the system is largely insensitive to the high-energy

You don't need to understand quark confinement to predict the spectrum of the hydrogen atom, even though it's made of quarks.

- High-energy details are absorbed in a few effective parameters of the low-energy model
- Used in gadget hamiltonian perturbation theory for QMA

The dynamics of the system is largely insensitive to the high-energy

David Poulin (Sherbrooke)

Time-Dependent Hamiltonian Simulation

Frequency cutoff

•
$$H(t) = \int_0^\infty J(\omega) e^{i\omega t} d\omega$$

• $\tilde{H}(t) = \int_0^\Gamma J(\omega) e^{i\omega t} d\omega$

- Frequency ω drives transition $E \rightarrow E + \omega$.
- If Γ ≫ ||*H*||, don't loose anything

Theorem

• Smooth cutoff $\tilde{H}(t) = \int \chi_{\sigma}(t - t')H(t')dt'$ • Evolutions $||U(t) - \tilde{U}(t)|| \le 2||H||^2 t \sqrt{\frac{2}{\pi}}\sigma$

Proof

• $X(t) = I - U^{\dagger}(t)\tilde{U}(t)$ • $\dot{X}(t) = -iU^{\dagger}(t)\Delta H(t)\tilde{U}(t)$ • X(0) = 0

•
$$X(t) = \int_0^t \dot{X}(t') dt'$$

- Schrödinger' equation \Rightarrow $\|U(t) - U(t')\| \le |t - t'| \cdot \|H\|$
- Integrate.

Frequency cutoff

•
$$H(t) = \int_0^\infty J(\omega) e^{i\omega t} d\omega$$

• $\tilde{H}(t) = \int_0^\Gamma J(\omega) e^{i\omega t} d\omega$

- Frequency ω drives transition $E \rightarrow E + \omega$.
- If Γ ≫ ||*H*||, don't loose anything

Theorem

• Smooth cutoff $\tilde{H}(t) = \int \chi_{\sigma}(t - t')H(t')dt'$ • Evolutions $||U(t) - \tilde{U}(t)|| \le 2||H||^2 t \sqrt{\frac{2}{\pi}}\sigma$

Proof

• $X(t) = I - U^{\dagger}(t)\tilde{U}(t)$ • $\dot{X}(t) = -iU^{\dagger}(t)\Delta H(t)\tilde{U}(t)$ • X(0) = 0

•
$$X(t) = \int_0^t \dot{X}(t') dt'$$

- Schrödinger' equation \Rightarrow $\|U(t) - U(t')\| \le |t - t'| \cdot \|H\|$
- Integrate.

Frequency cutoff

•
$$H(t) = \int_0^\infty J(\omega) e^{i\omega t} d\omega$$

• $\tilde{H}(t) = \int_0^\Gamma J(\omega) e^{i\omega t} d\omega$

- Frequency ω drives transition $E \rightarrow E + \omega$.
- If Γ ≫ ||*H*||, don't loose anything

Theorem

• Smooth cutoff
$$\tilde{H}(t) = \int \chi_{\sigma}(t - t')H(t')dt'$$

• Evolutions $||U(t) - \tilde{U}(t)|| \le 2||H||^2 t \sqrt{\frac{2}{\pi}}\sigma$

Proof

X(t) = I - U[†](t)Ũ(t)
 X(t) = -iU[†](t)∆H(t)Ũ(t)
 X(0) = 0

•
$$X(t) = \int_0^t \dot{X}(t') dt'$$

- Schrödinger' equation \Rightarrow $\|U(t) - U(t')\| \le |t - t'| \cdot \|H\|$
- Integrate.

Frequency cutoff

•
$$H(t) = \int_0^\infty J(\omega) e^{i\omega t} d\omega$$

• $\tilde{H}(t) = \int_0^\Gamma J(\omega) e^{i\omega t} d\omega$

- Frequency ω drives transition $E \rightarrow E + \omega$.
- If Γ ≫ ||*H*||, don't loose anything

Theorem

- Smooth cutoff $\tilde{H}(t) = \int \chi_{\sigma}(t t') H(t') dt'$
- Evolutions $||U(t) \tilde{U}(t)|| \le 2||H||^2 t \sqrt{\frac{2}{\pi}}\sigma$

Proof

• $X(t) = I - U^{\dagger}(t)\tilde{U}(t)$ • $\dot{X}(t) = -iU^{\dagger}(t)\Delta H(t)\tilde{U}(t)$ • X(0) = 0

•
$$X(t) = \int_0^t \dot{X}(t') dt'$$

- Schrödinger' equation \Rightarrow $\|U(t) - U(t')\| \le |t - t'| \cdot \|H\|$
- Integrate.

Frequency cutoff

•
$$H(t) = \int_0^\infty J(\omega) e^{i\omega t} d\omega$$

• $\tilde{H}(t) = \int_0^\Gamma J(\omega) e^{i\omega t} d\omega$

- Frequency ω drives transition $E \rightarrow E + \omega$.
- If Γ ≫ ||*H*||, don't loose anything

Theorem

- Smooth cutoff $\tilde{H}(t) = \int \chi_{\sigma}(t t') H(t') dt'$
- Evolutions $\|U(t) \tilde{U}(t)\| \le 2\|H\|^2 t \sqrt{\frac{2}{\pi}\sigma}$

Proof

X(t) = I − U[†](t)Ũ(t)
 X(t) = −iU[†](t)∆H(t)Ũ(t)
 X(0) = 0

•
$$X(t) = \int_0^t \dot{X}(t') dt'$$

- Schrödinger' equation \Rightarrow $\|U(t) - U(t')\| \le |t - t'| \cdot \|H\|$
- Integrate.

Frequency cutoff

•
$$H(t) = \int_0^\infty J(\omega) e^{i\omega t} d\omega$$

• $\tilde{H}(t) = \int_0^\Gamma J(\omega) e^{i\omega t} d\omega$

- Frequency ω drives transition $E \rightarrow E + \omega$.
- If Γ ≫ ||*H*||, don't loose anything

Theorem

- Smooth cutoff $\tilde{H}(t) = \int \chi_{\sigma}(t t') H(t') dt'$
- Evolutions $\|U(t) \tilde{U}(t)\| \le 2\|H\|^2 t \sqrt{\frac{2}{\pi}} \sigma$

Proof

X(t) = I - U[†](t)Ũ(t)
 X(t) = -iU[†](t)∆H(t)Ũ(t)
 X(0) = 0

- $X(t) = \int_0^t \dot{X}(t') dt'$
- Schrödinger' equation \Rightarrow $\|U(t) - U(t')\| \le |t - t'| \cdot \|H\|$

Frequency cutoff

•
$$H(t) = \int_0^\infty J(\omega) e^{i\omega t} d\omega$$

• $\tilde{H}(t) = \int_0^\Gamma J(\omega) e^{i\omega t} d\omega$

- Frequency ω drives transition $E \rightarrow E + \omega$.
- If Γ ≫ ||*H*||, don't loose anything

Theorem

- Smooth cutoff $\tilde{H}(t) = \int \chi_{\sigma}(t t') H(t') dt'$
- Evolutions $\|U(t) \tilde{U}(t)\| \le 2\|H\|^2 t \sqrt{\frac{2}{\pi}} \sigma$

Proof

- $X(t) = I U^{\dagger}(t)\tilde{U}(t)$ • $\dot{X}(t) = -iU^{\dagger}(t)\Delta H(t)\tilde{U}(t)$ • X(0) = 0
- $X(t) = \int_0^t \dot{X}(t') dt'$
- Schrödinger' equation \Rightarrow $\|U(t) - U(t')\| \le |t - t'| \cdot \|H\|$

Frequency cutoff

•
$$H(t) = \int_0^\infty J(\omega) e^{i\omega t} d\omega$$

• $\tilde{H}(t) = \int_0^\Gamma J(\omega) e^{i\omega t} d\omega$

- Frequency ω drives transition $E \rightarrow E + \omega$.
- If Γ ≫ ||*H*||, don't loose anything

Theorem

- Smooth cutoff $\tilde{H}(t) = \int \chi_{\sigma}(t t') H(t') dt'$
- Evolutions $\|U(t) \tilde{U}(t)\| \le 2\|H\|^2 t \sqrt{\frac{2}{\pi}} \sigma$

Proof

- X(t) = I − U[†](t)Ũ(t)
 X(t) = −iU[†](t)∆H(t)Ũ(t)
- X(0) = 0

- $X(t) = \int_0^t \dot{X}(t') dt'$
- Schrödinger' equation \Rightarrow $\|U(t) - U(t')\| \le |t - t'| \cdot \|H\|$

Frequency cutoff

•
$$H(t) = \int_0^\infty J(\omega) e^{i\omega t} d\omega$$

• $\tilde{H}(t) = \int_0^\Gamma J(\omega) e^{i\omega t} d\omega$

- Frequency ω drives transition $E \rightarrow E + \omega$.
- If Γ ≫ ||*H*||, don't loose anything

Theorem

- Smooth cutoff $\tilde{H}(t) = \int \chi_{\sigma}(t t') H(t') dt'$
- Evolutions $\|U(t) \tilde{U}(t)\| \le 2\|H\|^2 t \sqrt{\frac{2}{\pi}} \sigma$

Proof

- X(t) = I − U[†](t)Ũ(t)
 X(t) = −iU[†](t)∆H(t)Ũ(t)
- X(0) = 0

•
$$X(t) = \int_0^t \dot{X}(t') dt'$$

• Schrödinger' equation \Rightarrow $\|U(t) - U(t')\| \le |t - t'| \cdot \|H\|$

Frequency cutoff

•
$$H(t) = \int_0^\infty J(\omega) e^{i\omega t} d\omega$$

• $\tilde{H}(t) = \int_0^\Gamma J(\omega) e^{i\omega t} d\omega$

- Frequency ω drives transition $E \rightarrow E + \omega$.
- If Γ ≫ ||*H*||, don't loose anything

Theorem

- Smooth cutoff $\tilde{H}(t) = \int \chi_{\sigma}(t t') H(t') dt'$
- Evolutions $\|U(t) \tilde{U}(t)\| \le 2\|H\|^2 t \sqrt{\frac{2}{\pi}} \sigma$

Proof

- $X(t) = I U^{\dagger}(t)\tilde{U}(t)$
- $\dot{X}(t) = -iU^{\dagger}(t)\Delta H(t)\tilde{U}(t)$ • X(0) = 0

•
$$X(t) = \int_0^t \dot{X}(t') dt'$$

Integrate.

• Schrödinger' equation \Rightarrow $\|U(t) - U(t')\| \le |t - t'| \cdot \|H\|$

Frequency cutoff

•
$$H(t) = \int_0^\infty J(\omega) e^{i\omega t} d\omega$$

• $\tilde{H}(t) = \int_0^\Gamma J(\omega) e^{i\omega t} d\omega$

- Frequency ω drives transition $E \rightarrow E + \omega$.
- If Γ ≫ ||*H*||, don't loose anything

Theorem

- Smooth cutoff $\tilde{H}(t) = \int \chi_{\sigma}(t t') H(t') dt'$
- Evolutions $\|U(t) \tilde{U}(t)\| \le 2\|H\|^2 t \sqrt{\frac{2}{\pi}} \sigma$

Proof

- $X(t) = I U^{\dagger}(t)\tilde{U}(t)$
- $\dot{X}(t) = -iU^{\dagger}(t)\Delta H(t)\tilde{U}(t)$ • X(0) = 0

•
$$X(t) = \int_0^t \dot{X}(t') dt'$$

- Schrödinger' equation \Rightarrow $\|U(t) - U(t')\| \le |t - t'| \cdot \|H\|$
- Integrate.

Outline

4 Application: The hollowness of Hilbert space

Quantum algorithm

Randomized product formula

Time bins (exact)

$$\mathcal{T} e^{-i\int_0^T H(t)dt} = \mathcal{T} e^{-i\int_{T-\delta}^T H(t)dt} \dots \mathcal{T} e^{-i\int_{\delta}^{2\delta} H(t)dt} imes \mathcal{T} e^{-i\int_0^{\delta} H(t)dt}$$

Remove time order (approximate)

$$\left\|\mathcal{T}e^{-i\int_0^{\delta}H(t)dt}-e^{-i\int_0^{\delta}H(t)dt}\right\|\leq 2\|H\|^2\delta^2$$
, decoupling principle

Monte Carlo integral (approximate)

For
$$t_j \in_R [0, \delta]$$
, $\left\| \frac{1}{\delta} \int_0^{\delta} H(t) dt - \frac{1}{m} \sum_{j=1}^m H(t_j) \right\| \le \|H\| \frac{\delta}{\sqrt{m}}$, w.h.p.

Trotter decomposition (approximate)

$$\left\|e^{-i\frac{\delta}{m}\sum_{j=1}^{m}H(t_j)}-\prod_{j=1}^{m}e^{-i\frac{\delta}{m}H(t_j)}\right\|\leq \frac{\delta^2}{m}\|H\|^2$$

Randomized product formula

Time bins (exact)

$$\mathcal{T} e^{-i\int_0^T H(t)dt} = \mathcal{T} e^{-i\int_{T-\delta}^T H(t)dt} \dots \mathcal{T} e^{-i\int_{\delta}^{2\delta} H(t)dt} imes \mathcal{T} e^{-i\int_0^{\delta} H(t)dt}$$

Remove time order (approximate)

$$\left\|\mathcal{T}e^{-i\int_0^{\delta}H(t)dt}-e^{-i\int_0^{\delta}H(t)dt}\right\|\leq 2\|H\|^2\delta^2$$
, decoupling principle

Monte Carlo integral (approximate)

For
$$t_j \in_R [0, \delta]$$
, $\left\| \frac{1}{\delta} \int_0^{\delta} H(t) dt - \frac{1}{m} \sum_{j=1}^m H(t_j) \right\| \le \|H\| \frac{\delta}{\sqrt{m}}$, w.h.p.

Trotter decomposition (approximate)

$$\left\| e^{-i\frac{\delta}{m}\sum_{j=1}^{m}H(t_j)} - \prod_{j=1}^{m} e^{-i\frac{\delta}{m}H(t_j)} \right\| \le \frac{\delta^2}{m} \|H\|^2$$

David Poulin (Sherbrooke)

QIP 2011 12 / 17

Randomized product formula

Time bins (exact)

$$\mathcal{T} e^{-i\int_0^T H(t)dt} = \mathcal{T} e^{-i\int_{T-\delta}^T H(t)dt} \dots \mathcal{T} e^{-i\int_{\delta}^{2\delta} H(t)dt} imes \mathcal{T} e^{-i\int_0^{\delta} H(t)dt}$$

Remove time order (approximate)

$$\left\|\mathcal{T}e^{-i\int_0^{\delta} H(t)dt} - e^{-i\int_0^{\delta} H(t)dt}\right\| \leq 2\|H\|^2\delta^2$$
, decoupling principle

Monte Carlo integral (approximate)

For
$$t_j \in_R [0, \delta]$$
, $\left\| \frac{1}{\delta} \int_0^{\delta} H(t) dt - \frac{1}{m} \sum_{j=1}^m H(t_j) \right\| \le \|H\| \frac{\delta}{\sqrt{m}}$, w.h.p.

Trotter decomposition (approximate)

$$\left\|e^{-i\frac{\delta}{m}\sum_{j=1}^{m}H(t_j)}-\prod_{j=1}^{m}e^{-i\frac{\delta}{m}H(t_j)}\right\|\leq \frac{\delta^2}{m}\|H\|^2$$

Randomized product formula

Time bins (exact)

$$\mathcal{T} e^{-i\int_0^T H(t)dt} = \mathcal{T} e^{-i\int_{T-\delta}^T H(t)dt} \dots \mathcal{T} e^{-i\int_{\delta}^{2\delta} H(t)dt} imes \mathcal{T} e^{-i\int_0^{\delta} H(t)dt}$$

Remove time order (approximate)

$$\left\|\mathcal{T}e^{-i\int_0^{\delta} H(t)dt} - e^{-i\int_0^{\delta} H(t)dt}
ight\| \le 2\|H\|^2\delta^2$$
, decoupling principle

Monte Carlo integral (approximate)

For
$$t_j \in_R [0, \delta]$$
, $\left\| \frac{1}{\delta} \int_0^{\delta} H(t) dt - \frac{1}{m} \sum_{j=1}^m H(t_j) \right\| \le \|H\| \frac{\delta}{\sqrt{m}}$, w.h.p.

Trotter decomposition (approximate)

$$\left\| e^{-i\frac{\delta}{m}\sum_{j=1}^{m}H(t_j)} - \prod_{j=1}^{m}e^{-i\frac{\delta}{m}H(t_j)} \right\| \le \frac{\delta^2}{m} \|H\|^2$$

- U(t): simulate time evolution of $H(t_i)$ for randomly chosen t_i .
- Randomness is necessary.

Outline

Introduction

- 2 Decoupling principle
- 3 Quantum algorithm
- Application: The hollowness of Hilbert space

• Hilbert space is big.

• Physical systems appear to occupy a tiny sub-manifold:

- Matrix product states and PEPS
- Laughlin state for fractional quantum Hall liquids
- BCS state for superconductivity
- etc.

Proposed definition: physical state of quantum many-body system

• Hilbert space is big.

• Physical systems appear to occupy a tiny sub-manifold:

- Matrix product states and PEPS
- Laughlin state for fractional quantum Hall liquids
- BCS state for superconductivity
- etc.

Proposed definition: physical state of quantum many-body system

- Hilbert space is big.
- Physical systems appear to occupy a tiny sub-manifold:
 - Matrix product states and PEPS
 - Laughlin state for fractional quantum Hall liquids
 - BCS state for superconductivity
 - etc.

Proposed definition: physical state of quantum many-body system

- Hilbert space is big.
- Physical systems appear to occupy a tiny sub-manifold:
 - Matrix product states and PEPS
 - Laughlin state for fractional quantum Hall liquids
 - BCS state for superconductivity
 - etc.

Proposed definition: physical state of quantum many-body system

- Hilbert space is big.
- Physical systems appear to occupy a tiny sub-manifold:
 - Matrix product states and PEPS
 - Laughlin state for fractional quantum Hall liquids
 - BCS state for superconductivity
 - etc.

Proposed definition: physical state of quantum many-body system

• A direct counting argument appears difficult because *H*(*t*) can vary arbitrarily wildly.

Corollary to our result

Vol(physical states) \leq # poly-size quantum circuits \times Vol(ϵ ball)

Number of quantum circuits

- $\mathcal{M} = finite gate set$
- *K* = number of qubits
- $\alpha = \text{degree sim. poly}$ $N_C \leq (|\mathcal{M}|K^2)^{K^{\alpha}}$

Number of quantum states

- Size of $\mathcal{H} = \text{Vol}(2^{K+1} 1 \text{ sphere})$
- Vol(ϵ ball) = Vol($2^{K+1} 2$ sphere)

$\frac{Vol(Physical states)}{Vol(States)} \in \mathcal{O}(K^{K} \epsilon^{2^{k}})$

• A direct counting argument appears difficult because *H*(*t*) can vary arbitrarily wildly.

Corollary to our result

Vol(physical states) \leq # poly-size quantum circuits \times Vol(ϵ ball)

Number of quantum circuits

- $\mathcal{M} = finite gate set$
- *K* = number of qubits
- $\alpha = \text{degree sim. poly}$

 $N_C \leq (|\mathcal{M}|K^2)^{K^{lpha}}$

lumber of quantum states

• Size of
$$\mathcal{H} = \text{Vol}(2^{K+1} - 1 \text{ sphere})$$

• Vol(
$$\epsilon$$
 ball) = Vol($2^{K+1} - 2$ sphere)

$rac{Vol(Physical \ states)}{Vol(States)} \in \mathcal{O}(K^K \epsilon^{2^k})$

• A direct counting argument appears difficult because *H*(*t*) can vary arbitrarily wildly.

Corollary to our result

Vol(physical states) \leq # poly-size quantum circuits \times Vol(ϵ ball)

Number of quantum circuits

- $\mathcal{M} = finite gate set$
- K = number of qubits
- $\alpha = \text{degree sim. poly}$

 $N_C \leq (|\mathcal{M}|K^2)^{K^{lpha}}$

lumber of quantum states

• Size of
$$\mathcal{H} = \text{Vol}(2^{K+1} - 1 \text{ sphere})$$

• Vol(
$$\epsilon$$
 ball) = Vol($2^{K+1} - 2$ sphere)

$$rac{Vol(Physical \ states)}{Vol(States)} \in \mathcal{O}(K^K \epsilon^{2^k})$$

• A direct counting argument appears difficult because *H*(*t*) can vary arbitrarily wildly.

Corollary to our result

Vol(physical states) \leq # poly-size quantum circuits \times Vol(ϵ ball)

Number of quantum circuits

- *M* = finite gate set
- K = number of qubits

• $\alpha = \text{degree sim. poly}$

 $N_C \leq (|\mathcal{M}|K^2)^{K^{lpha}}$

lumber of quantum states

- Size of $\mathcal{H} = \text{Vol}(2^{K+1} 1 \text{ sphere})$
- Vol(ϵ ball) = Vol($2^{K+1} 2$ sphere)

$rac{Vol(Physical \ states)}{Vol(States)} \in \mathcal{O}(K^K \epsilon^{2^k})$
• A direct counting argument appears difficult because *H*(*t*) can vary arbitrarily wildly.

Corollary to our result

Vol(physical states) \leq # poly-size quantum circuits \times Vol(ϵ ball)

Number of quantum circuits

- $\mathcal{M} = finite gate set$
- *K* = number of qubits
- $\alpha = \text{degree sim. poly}$

Jumber of quantum states

- Size of $\mathcal{H} = \text{Vol}(2^{K+1} 1 \text{ sphere})$
- Vol(ϵ ball) = Vol($2^{K+1} 2$ sphere)

$rac{Vol(Physical \ states)}{Vol(States)} \in \mathcal{O}(K^K \epsilon^{2^k})$

• A direct counting argument appears difficult because *H*(*t*) can vary arbitrarily wildly.

Corollary to our result

Vol(physical states) \leq # poly-size quantum circuits \times Vol(ϵ ball)

Number of quantum circuits

- $\mathcal{M} = finite gate set$
- *K* = number of qubits
- $\alpha = \text{degree sim. poly}$

 $N_C \leq (|\mathcal{M}|K^2)^{K^{lpha}}$

lumber of quantum states

• Size of
$$\mathcal{H} = \text{Vol}(2^{K+1} - 1 \text{ sphere})$$

• Vol(
$$\epsilon$$
 ball) = Vol($2^{K+1} - 2$ sphere)

$$rac{Vol(Physical\ states)}{Vol(States)} \in \mathcal{O}(K^K \epsilon^{2^k})$$

• A direct counting argument appears difficult because *H*(*t*) can vary arbitrarily wildly.

Corollary to our result

Vol(physical states) \leq # poly-size quantum circuits \times Vol(ϵ ball)

Number of quantum circuits

- $\mathcal{M} = finite gate set$
- *K* = number of qubits
- $\alpha = \text{degree sim. poly}$

 $N_C \leq (|\mathcal{M}|K^2)^{K^{lpha}}$

Number of quantum states

• Size of
$$\mathcal{H} = \text{Vol}(2^{K+1} - 1 \text{ sphere})$$

• Vol(ϵ ball) = Vol($2^{K+1} - 2$ sphere)

$rac{Vol(Physical \ states)}{Vol(States)} \in \mathcal{O}(K^K \epsilon^{2^k})$

• A direct counting argument appears difficult because *H*(*t*) can vary arbitrarily wildly.

Corollary to our result

Vol(physical states) \leq # poly-size quantum circuits \times Vol(ϵ ball)

Number of quantum circuits

- $\mathcal{M} = finite gate set$
- *K* = number of qubits
- $\alpha = \text{degree sim. poly}$

 $N_C \leq (|\mathcal{M}|K^2)^{K^{lpha}}$

Number of quantum states

• Size of
$$\mathcal{H} = \text{Vol}(2^{K+1} - 1 \text{ sphere})$$

• Vol(
$$\epsilon$$
 ball) = Vol($2^{K+1} - 2$ sphere)

$$rac{Vol(Physical\ states)}{Vol(States)} \in \mathcal{O}(K^K \epsilon^{2^k})$$

• A direct counting argument appears difficult because *H*(*t*) can vary arbitrarily wildly.

Corollary to our result

Vol(physical states) \leq # poly-size quantum circuits \times Vol(ϵ ball)

Number of quantum circuits

- $\mathcal{M} = finite gate set$
- *K* = number of qubits
- $\alpha = \text{degree sim. poly}$

 $N_C \leq (|\mathcal{M}|K^2)^{K^{lpha}}$

Number of quantum states

• Size of
$$\mathcal{H} = \text{Vol}(2^{K+1} - 1 \text{ sphere})$$

• Vol(
$$\epsilon$$
 ball) = Vol($2^{K+1} - 2$ sphere)

$$rac{Vol(Physical \ states)}{Vol(States)} \in \mathcal{O}(K^K \epsilon^{2^k})$$

• Folklore (in physics): High frequency fluctuations don't affect the low energy physics.

- We have demonstrated this rigorously for the class of *k*-local Hamiltonians.
- Corollary: Using randomness, it is possible to efficiently simulate *k*-local bounded Hamiltonians with arbitrary time-dependence.
 - Previous techniques had complexity scaling with the inverse fluctuation time-scale of the system.
- Folklore (in this community): Most states in Hilbert space are inaccessible.
 - Proved this for dynamics generated by arbitrary *k*-local Hamiltonian.
 - Physically well motivated.
 - This includes the standard quantum circuit model.

- Folklore (in physics): High frequency fluctuations don't affect the low energy physics.
 - We have demonstrated this rigorously for the class of *k*-local Hamiltonians.
- Corollary: Using randomness, it is possible to efficiently simulate *k*-local bounded Hamiltonians with arbitrary time-dependence.
 - Previous techniques had complexity scaling with the inverse fluctuation time-scale of the system.
- Folklore (in this community): Most states in Hilbert space are inaccessible.
 - Proved this for dynamics generated by arbitrary *k*-local Hamiltonian.
 - Physically well motivated.
 - This includes the standard quantum circuit model.

- Folklore (in physics): High frequency fluctuations don't affect the low energy physics.
 - We have demonstrated this rigorously for the class of *k*-local Hamiltonians.
- Corollary: Using randomness, it is possible to efficiently simulate *k*-local bounded Hamiltonians with arbitrary time-dependence.
 - Previous techniques had complexity scaling with the inverse fluctuation time-scale of the system.
- Folklore (in this community): Most states in Hilbert space are inaccessible.
 - Proved this for dynamics generated by arbitrary *k*-local Hamiltonian.
 - Physically well motivated.
 - This includes the standard quantum circuit model.

- Folklore (in physics): High frequency fluctuations don't affect the low energy physics.
 - We have demonstrated this rigorously for the class of *k*-local Hamiltonians.
- Corollary: Using randomness, it is possible to efficiently simulate *k*-local bounded Hamiltonians with arbitrary time-dependence.
 - Previous techniques had complexity scaling with the inverse fluctuation time-scale of the system.
- Folklore (in this community): Most states in Hilbert space are inaccessible.
 - Proved this for dynamics generated by arbitrary *k*-local Hamiltonian.
 - Physically well motivated.
 - This includes the standard quantum circuit model.

- Folklore (in physics): High frequency fluctuations don't affect the low energy physics.
 - We have demonstrated this rigorously for the class of *k*-local Hamiltonians.
- Corollary: Using randomness, it is possible to efficiently simulate *k*-local bounded Hamiltonians with arbitrary time-dependence.
 - Previous techniques had complexity scaling with the inverse fluctuation time-scale of the system.
- Folklore (in this community): Most states in Hilbert space are inaccessible.
 - Proved this for dynamics generated by arbitrary *k*-local Hamiltonian.
 - Physically well motivated.
 - This includes the standard quantum circuit model.

- Folklore (in physics): High frequency fluctuations don't affect the low energy physics.
 - We have demonstrated this rigorously for the class of *k*-local Hamiltonians.
- Corollary: Using randomness, it is possible to efficiently simulate *k*-local bounded Hamiltonians with arbitrary time-dependence.
 - Previous techniques had complexity scaling with the inverse fluctuation time-scale of the system.
- Folklore (in this community): Most states in Hilbert space are inaccessible.
 - Proved this for dynamics generated by arbitrary *k*-local Hamiltonian.
 - Physically well motivated.
 - This includes the standard quantum circuit model.

- Folklore (in physics): High frequency fluctuations don't affect the low energy physics.
 - We have demonstrated this rigorously for the class of *k*-local Hamiltonians.
- Corollary: Using randomness, it is possible to efficiently simulate *k*-local bounded Hamiltonians with arbitrary time-dependence.
 - Previous techniques had complexity scaling with the inverse fluctuation time-scale of the system.
- Folklore (in this community): Most states in Hilbert space are inaccessible.
 - Proved this for dynamics generated by arbitrary *k*-local Hamiltonian.
 - Physically well motivated.
 - This includes the standard quantum circuit model.

- Folklore (in physics): High frequency fluctuations don't affect the low energy physics.
 - We have demonstrated this rigorously for the class of *k*-local Hamiltonians.
- Corollary: Using randomness, it is possible to efficiently simulate *k*-local bounded Hamiltonians with arbitrary time-dependence.
 - Previous techniques had complexity scaling with the inverse fluctuation time-scale of the system.
- Folklore (in this community): Most states in Hilbert space are inaccessible.
 - Proved this for dynamics generated by arbitrary *k*-local Hamiltonian.
 - Physically well motivated.
 - This includes the standard quantum circuit model.