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We consider the manifold of all quantum many-body states that can be generated by arbitrary
time-dependent local Hamiltonians in a time that scales polynomially in the system size, and show
that it occupies an exponentially small volume in Hilbert space. This implies that the overwhelming
majority of states in Hilbert space are not physical as they can only be produced after an expo-
nentially long time. We establish this fact by making use of a time-dependent generalization of the
Suzuki-Trotter expansion, followed by a counting argument. This also demonstrates that a com-
putational model based on arbitrarily rapidly changing Hamiltonians is no more powerful than the
standard quantum circuit model.

I. INTRODUCTION AND SUMMARY OF
RESULTS

The Hilbert space of a quantum system is big—its di-
mension grows exponentially with the number of particles
it contains. Thus, parametrizing a generic quantum state
of N particles requires an exponential number of real pa-
rameters. Fortunately, the states of many physical sys-
tems of interest appear to occupy a tiny sub-manifold of
this gigantic space. Indeed, the essential physical features
of many systems can be explained by variational states
specified with a small number of parameters. Well-known
examples include the BCS state for superconductivity [1],
Laughlin’s state for fractional quantum Hall liquids [2],
tensor network states occurring in DMRG and real-space
renormalization methods [3–6]. In these cases, the states
are described by number of parameters scales only poly-
nomially with N .

In this paper, we attempt to define the class of phys-
ical states of a many-body quantum system with local
Hilbert spaces of bounded dimensions, and prove that
they represent an exponentially small sub-manifold of the
Hilbert space. We say that a state is physical if it can be
reached, starting in some fiducial state (e.g. a ferromag-
netic state, or the vacuum), by an evolution generated
by any time-dependent quantum many-body Hammilto-
nian, with the constraint that 1) the Hamiltonian is local
in the sense that it is the sum of terms each acting on
at most k bodies for some constant k independent of N
and 2) the duration of the evolution scales at most as a
polynomial in the number of particles in the system. The
assumption about the initial fiducial state is artificial; we
could alternatively define the class of physical evolutions
for quantum many-body systems as the ones generated
by Hamiltonians obeying constraints 1 and 2, and would
reach the same conclusions.

Constraint 2 is very much reminiscent of the way com-
plexity classes are defined in theoretical computer sci-
ence, where the central object of study is the scaling of

the time required to solve a problem as a function of
its input size. The classical analogue for our problem is
a well-known counting argument of Shannon [7] demon-
strating that the number of boolean functions of N bits

is doubly exponentially in N (i.e., 22
N

), with the con-
sequence that no efficient (i.e. polynomial) algorithm
can exist to compute the overwhelming majority of those
functions. Indeed, the number of different functions that
can be encoded by all classical circuits of polynomial
depth scales as 2poly(N), which is exponentially smaller
than the total number of Boolean functions.

Our contribution is a quantum generalization of this
result, which has in part been a folklore theorem in the
quantum information community for some time. The
crux of our argument is to demonstrate that the dynam-
ics generated by any local Hamiltonian, without any as-
sumptions on its time-dependence, can be simulated by a
quantum circuit of polynomial size. This is an important
result: previously-known Hamiltonian-simulation meth-
ods [8–13] produced circuits of size depending on the rate
of change of the Hamiltonian, scaling e.g. with ‖∂H/∂t‖
or some higher order derivatives. From our result we
can count the number of physical states (or physical evo-
lution operators) by reproducing the folk theorem and
show that they occupy an exponentially small fraction
of Hilbert space. Note that a direct parameter count-
ing would not produce this result because we impose no
restriction on the time-dependence of the Hamiltonian.
The complete description of a rapidly changing Hamilto-
nian requires lots of information and, from this perspec-
tive, there are in principle enough parameters to reach all
states in the Hilbert space. This leads to the conclusion
that most states in the Hilbert space are not physical
and they can only be reached after an exponentially long
time. This has to be contrasted to the classical case,
where all states of N bits correspond to physical states:
they can easily be generated by trivial depth-one circuits.
The difference between classical and quantum behavior
is due to the existence of quantum entanglement.
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Lastly, our result can be seen as an illustration of the
decoupling principle which states that the high-frequency
fluctuations of the Hamiltonian should not affect the low-
energy physics. As a consequence, it should possible
to largely ignore these fluctuations without significantly
modifying the dynamics of the system. This is the work-

ing principle behind renormalization group methods of
quantum field theory and quantum many-body physics.
Indeed, our analysis leads to a rigorous demonstration of
this important principle for local Hamiltonians encoun-
tered in quantum many-body physics.
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