Topological implications in quantum tomography

Michael Wolf NBI Copenhagen TU Munich

This talk is currently not available in your country.

Topological implications in quantum tomography

David Reeb NBI Copenhagen TU Munich Question: How many measurements/outcomes are necessary to identify a quantum state ρ under prior information $\rho \in M$?

Setup: • assume: prior info restricts to manifold M of dimensionality d_M • measure (i) m expectation values or (ii) POVM with m + 1 outcomes: $h: M \to \mathbb{R}^m, \quad h(\rho)_i = \operatorname{tr}[\rho A_i]$

Goal: • find minimal m s.t. h is injective (info complete for M)

Example: M = pure states in \mathbb{C}^d : $d_M = 2d - 2 \le m \le d^2 - 1$

[Flammia et al.]: $2d - 1 \le m$ [Gross et al.]: efficient probabilistic scheme with $m = O(d(\log d)^2)$

Topological obstructions

 $\begin{array}{ll} \text{Proposition:} & h: M \to \mathbb{R}^m, \quad h(\rho)_i = \operatorname{tr}[\rho^{\otimes n}A_i] \\ & \text{ is info-complete for } M \text{ iff it is a topological embedding} \end{array}$

Recipe for lower bounds on m:

show that topological properties of ${\cal M}$ have no realization in too small dimensions m

Powerful toolboxes: homotopy, cohomology, etc.

Observation: map from Bloch-SPHERE to \mathbb{R}^2 either discontinuous or not injective i.e. $m > d_M$.

 $\begin{array}{ll} \mbox{Corollary:} & h: M \to \mathbb{R}^m, \quad h(\rho)_i = {\rm tr}[\rho^{\otimes n}A_i] \\ & \mbox{ is info-complete for } M \mbox{ iff it is so for all qubit states.} \end{array}$

Borsuk-Ulam: If m = 2 then there exist two **orthogonal** states which cannot be distinguished.

Example 2: M =pure states in \mathbb{C}^3 with **real** amplitudes $|\psi\rangle = (x, y, z) \in \mathbb{R}^3$ $d_M = 2$

Observation: $M \simeq$ real projective plane $\mathbb{R}\mathbf{P}^2$

Boy surface, Oberwolfach

$$\begin{array}{ll} \mbox{Corollary:} & h: M \to \mathbb{R}^m, \quad h(\rho)_i = {\rm tr}[\rho^{\otimes n}A_i] \\ & \mbox{ is info-complete for } M \mbox{ only if } m \geq 4 \ . \ \ m = 4 \mbox{ can be} \\ & \mbox{ realized for } n = 1. \end{array}$$

proof idea: • non-orientability of $\mathbb{R}\mathbf{P}^2$ implies self-intersections in \mathbb{R}^3 • $(x, y, z) \mapsto (yz, xz, xy, x^2 - y^2)$ leads to **topological embedding**

Obstructions from differential topology

 $\begin{array}{ll} \text{Proposition:} & \text{With some assumptions on } M, \ h: M \to \mathbb{R}^m, \quad h(\rho)_i = \operatorname{tr}[\rho A_i] \\ & \text{ is info-complete for } M \text{ iff it is an embedding in the category of} \\ & \text{ differential topology.} \end{array}$

Assumptions:	ullet M is smooth submanifold	
	 Union of tangent spaces is contained in 	
	`difference space' $\{X X = \lambda(M_1 - M_2), M_i \in M, \lambda > 0\}$	

Lemma: This holds for $M = \mathbb{C}\mathbf{P}^{d-1}, G(r, d-r)$

Powerful toolboxes for lower bounds on m:

- Atiyah Hirzebruch index theorem
- Chern's results on dual Stiefel-Whitney classes

Pure states in \mathbb{C}^d

Proposition: The min *m* for which $h: M \to \mathbb{R}^m$, $h(\rho)_i = tr[\rho A_i]$ can be info-complete satisfies

$$2d_M - 2\alpha < m \le 2d_M - \alpha$$

where α = number of 1's in binary expansion of d-1

note: $\alpha \leq \log_2 d, \ d_M = 2d - 2$

Pure states in \mathbb{C}^d

Proposition: The min *m* for which $h: M \to \mathbb{R}^m$, $h(\rho)_i = tr[\rho A_i]$ can be info-complete satisfies

$$2d_M - 2\alpha < m \le 2d_M - \alpha$$

where α = number of 1's in binary expansion of d-1

note: $\alpha \leq \log_2 d, \ d_M = 2d - 2$

Remarks:

- Analogous result for states with rank constraint (via Grassmannians) In particular $m \le 2d_M - 1, d_M = 2r(d - r)$
 - Upper bounds via explicitly constructed observables

General upper bound

Let ${\cal M}$ be a set with Minkowski dimension

 $D_M := \limsup_{\epsilon \to 0} \frac{\log N_{\epsilon}}{\log(1/\epsilon)}$, $N_{\epsilon} = \min$ number of covering ϵ balls

(note: $D_M = d_M$ for smooth manifolds)

 $\begin{array}{lll} \mbox{Proposition:} & \mbox{Almost every} & h: M \to \mathbb{R}^m, & h(\rho)_i = {\rm tr}[\rho A_i] \\ & \mbox{ is info-complete for } M \mbox{ if } m > 2D_M \end{array}$

Conclusion

- ullet Topological properties of *prior information* are relevant for min m
- m can exceed the number of parameters necessary for description by a factor of two but not more
- Results beat e.g. *compressed sensing*. However, we optimized m irrespective of classical post-processing, robustness and verifyability of assumptions

joint work of:	Luca Mazzarella Teiko Heinosaari Michael Wolf	
presentation:	David Reeb	
on arXiv soon		

Job announcement

where?	TU Munich
what?	postdocs & PhD's in QIT
when?	from March on
contact:	Michael Wolf (wolf.qit@gmail.com)

