Bringing order through disorder: Localization in the toric code

James R. Wootton

Robert Heath

Jiannis K. Pachos

University of Leeds

Motivation

- The toric code is a quantum memory, protected by topology and a gap
- In experiments, memories are subject to stray magnetic fields
- Their effect on the gap and on topological order have been well studied (Bravyi and Hastings 2010; J. Vidal et al 2008; Tsomokos et al 2010)
- Here we study their **dynamic effects** on excited states (Kay 2008; Pastawski, Kay, Schuch, Cirac 2009)
- Anyonic errors are propagated via quantum walks
- Quantum memory is destroyed in linear time
- Can disorder be used to protect the stored information through localization?

Overview

- Toric code
 - Encoding, errors and anyons
 - Hamiltonian and protection
- Magnetic fields
 - Effects on the toric code
 - Quantum walks

- Disorder and localization
 - Random couplings
 - Anderson localization
 - Error suppression

- Proposed by Kitaev (1997)
- Stabilizer code
- Defined on 2D lattice
- Spin-1/2 on edges
- Lattice wrapped around torus (other surfaces may also be used)

Stabilizers defined on spins around each plaquette and vertex

$$A_{v} = \sigma_{i}^{x} \sigma_{j}^{x} \sigma_{k}^{x} \sigma_{l}^{x},$$

$$B_p = \sigma_i^z \sigma_j^z \sigma_k^z \sigma_l^z$$

Quantum information stored in stabilizer space

$$A_{\nu}|\psi\rangle = |\psi\rangle \forall \nu$$

$$B_{\nu}|\psi\rangle = |\psi\rangle \forall p$$

Four dimensional Hilbert space: two logical qubits

- Local spin errors move state out of stabilizer space
- Stabilizers can be measured to determine whether errors have occurred
- Best means to correct errors can be determined and performed
- Single spin errors affect pairs of neighbouring stabilizers
- Can be interpreted as pair creation of quasiparticles
- ${}^{ullet}A_{_{v}}|\psi
 angle\!=\!-|\psi
 angle$ implies an e anyon on v
- •Created and moved by $oldsymbol{\sigma}_i^z$ spin errors

- $m{\cdot} m{B}_p m{|} m{\psi} ra{=} m{|} m{\psi} ra{}$ implies an m anyon on p
- •Created and moved by σ_i^x operations
- The anyons have mutual anyonic statistics, but this will not prove important

• Logical operations correspond to moving anyons around the torus in topologically

non-trivial loops

 Trivial loops have no effect on logical qubits – equivalent to stabilizers

• Error correction attempts to annihilate anyons without creating non-trivial loops

• Error correction successful when density of anyons is less than a **critical value**

$$\rho_c \approx 0.31$$

(Dennis, Kitaev, Landahl, Preskill, 2002)

Quasilocal stabilizers mean Hamiltonian can be implemented

$$H_{TC} = -J \sum_{v} A_{v} - J \sum_{p} B_{p}$$

- Degenerate ground state corresponds to stabilizer space
- Encoded information protected by energy gap
- Gap stable against local perturbations (this morning's talk), but information vulnerable to dynamic effects (Pastawski)

Magnetic fields and the toric code

Consider the perturbation

$$H_{TC} = -J \sum_{v} A_{v} - J \sum_{p} B_{p} + h \sum_{i} \sigma_{i}^{z}$$

$$\sum_{i} \sigma_{i}^{z} = T + C$$

$$T = \sum_{n} P_{n} \left(\sum_{i} \sigma_{i}^{z} \right) P_{n}$$

$$C = \sum_{n \neq m} P_{n} \left(\sum_{i} \sigma_{i}^{z} \right) P_{m}$$

- *P_n* is the projector onto the space of states with n vertex anyons
- T moves e anyons
- ullet C creates and annihilates them

2D anyonic quantum walks

- •For $J \gg h$ the effect of C is perturbatively suppressed
- •The Hamiltonian then moves any anyons present in a continuous time quantum walk

$$H = \sum_{v, v'} M_{v, v'} t_{v, v'} + U \sum_{v} n_{v} (n_{v} - 1)$$

$$M_{v,v'} = J \delta_{v,v'} + h \delta_{\langle v,v' \rangle}$$

- •Such walks spread quickly, causing logical errors in a time linear with L
- Critical density of anyons is zero in the presence of the field. No errors can be tolerated.
- Anyonis statistics do not have a significant effect (Pachos et al, 2009)

Disorder in Couplings

- Can we suppress the effect of the magnetic field and regain finite critical density?
- Consider disorder in the toric code Hamiltonian

$$H_{TC} = -\sum_{v} J_{v} A_{v} - \sum_{p} J_{p} B_{p}$$
 $M_{v,v'} = J_{v} \delta_{v,v'} + h \delta_{\langle v,v' \rangle}$

$$M_{v,v'} = J_v \delta_{v,v'} + h \delta_{\langle v,v' \rangle}$$

• J_{v} randomly vary from vertex to vertex

Theory suggests that Anderson localization will occur

Random interference exponentially suppresses motion

(Aspect et. al, 2008)

Disorder in Couplings

• Consider sparsely distributed anyon pairs. Only two walker Hamiltonians need be considered

Bound can be placed on eigenstates

$$\left| \left\langle v \, v' \middle| E_{v_0 v_0'} \right\rangle \right| < \exp \left[\frac{-d \left(v \, , v' \, ; v_0 \, , v_0' \right)}{2 l_{v_0, v_0'}} \right]$$

$$d(v, v'; v_{0}, v_{0}') = \min \left[d(v, v_{0}) + d(v', v_{0}'), d(v, v_{0}') + d(v', v_{0}) \right]$$

•Hamiltonian localization length $\,l\,$ defined as maximum of all $l_{\,v_{\scriptscriptstyle 0}\,v_{\scriptscriptstyle 0}\,'}$

Disorder in Couplings

- Localized eigenstates prevent the walkers moving freely
- Motion of the walker is exponentially suppressed

$$P(d,t) < L^8 e^{-d/l} \approx (21)^8 e^{-d/l}$$

- •Anyons are bound to an area of radius ~I around their starting position at all times t.
- This allows a finite anyon density to be tolerable, even in the presence of the field

- For an approximation of the critical density, consider a coarse grained lattice
- Anyon pair in each box
- Errors occur when anyons leave their boxes
- Due to localization

$$p < 2^8 l^9 e^{-\lambda/l}$$

Errors correctable when

$$p < p_c$$
, $p_c \approx 0.11$

(Dennis, et al)

$$\lambda > l \ln \left(2^8 l^9 / p_c \right)$$

hence

$$\rho_c < \left[l \ln \left(2^8 l^9/p_c\right)\right]^{-2}$$
 and so not zero

- Localization lengths in 2D can be very large
- If too large, it may not be realistic to build codes big enough to benefit from localization
- Critical anyon density, though non-zero, will then become impractically small
- It's therefore important to **determine the typical values of** *I* for disorder we would expect to be inherent in realizations of the toric code
- •Consider Cauchy distribution around average value J. Disorder parametrized by width \mathcal{Y}

Other disorder strengths were also considered

- Length decreases for increased disorder
- May be worth purposefully including disorder in the toric code to enhance localization effect

Conclusions

- Magnetic fields are fatal for the toric code, inducing quantum walks
- This destroys memory in linear time, and sets the critical anyon density to zero
- Disorder inherent in the J's will cause Anderson localization, exponentially suppressing anyon motion and allowing the critical anyon density to be finite
- •Other sources of disorder have also been considered. Using random graphs causes linear lifetime to become polynomial.
- Random graphs also increase lifetime against thermal errors, which induce classical random walks of anyons
- Disorder is powerful tool to suppress errors in topological models
- Ultimate goal: thermally stable memories. Could disorder help toward this goal?

The End

Thanks for your attention

Random Lattices

- We consider random lattices
- These are designed such that
 - -Number of spins per plaquette and vertex remains small
 - -Symmetry is maintained between e and m anyons

Random Lattices

- •The speed at which errors build up can be seen from the time taken until the error probability becomes p=0.1
- This increases linearly with L on the square lattice, but polynomially for the random

- Lifetime is greatly increased by disorder
- Note also that only ¾ of the spins are used

Thermal Errors

- Thermal errors induce classical random walks of anyons
- Anderson localization not possible
- However, random graphs may still have effect
- Increase of the critical time is found

Two walker Hamiltonian was diagonalized for

$$\gamma = J/10 \qquad h = J/100$$

- Probability distribution derived from each eigenstate
- Localization length of the eigenstate taken to be s.d. of distribution
- Localization length of Hamiltonian is maximum of all these

