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Motivation N
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*The toric code is a quantum memory, protected by topology and a gap

*In experiments, memories are subject to stray magnetic fields

* Their effect on the gap and on topological order have been well studied
(Bravyi and Hastings 2010; J. Vidal et al 2008; Tsomokos et al 2010)

*Here we study their dynamic effects on excited states (Kay 2008; Pastawski, Kay,
Schuch, Cirac 2009)

* Anyonic errors are propagated via quantum walks

*Quantum memory is destroyed in linear time

* Can disorder be used to protect the stored information through localization?



Overview n
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* Toric code
*Encoding, errors and anyons
* Hamiltonian and protection

* Magnetic fields
* Effects on the toric code
*Quantum walks

*Disorder and localization
* Random couplings
* Anderson localization
*Error suppression



The toric code

* Proposed by Kitaev (1997)

* Stabilizer code

*Defined on 2D lattice

*Spin-1/2 on edges

*Lattice wrapped around torus
(other surfaces may also be used)
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The toric code N
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* Stabilizers defined on spins around each plaquette and vertex
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* Four dimensional Hilbert space: two logical qubits



The toric code

*Local spin errors move state out of stabilizer space

* Stabilizers can be measured to determine
whether errors have occurred

*Best means to correct errors can be
determined and performed

* Single spin errors affect pairs of neighbouring
stabilizers

*Can be interpreted as pair creation of
quasiparticles

y —— implies an e anyon on v
A==y im /

<
*Created and moved by U ; spin errors
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The toric code

. —_ i
Bp‘([/> ‘([j> implies an m anyon on p
*Created and moved by O lx operations

* The anyons have mutual anyonic statistics,
but this will not prove important
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The toric code N

UNIVERSITY OF LEED

*Logical operations correspond to moving anyons around the torus in topologically
non-trivial loops
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¢ o o o | o
*Error correction attempts to annihilate ° ° ® ® ® ®
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(Dennis, Kitaev, Landahl, Preskill, 2002)
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The toric code N
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*Quasilocal stabilizers mean Hamiltonian can be implemented

Hy==J2, A~J) B,

*Degenerate ground state corresponds to stabilizer space
* Encoded information protected by energy gap

*Gap stable against local perturbations (this morning's talk), but information
vulnerable to dynamic effects (Pastawski)



Magnetic fields and the toric code N
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* Consider the perturbation

Hie==J 2. A~J2, B,+h) o]

ZiafZT—I—C TZZHPH(ZZ,U?)P”
=3 P 0e,

* P is the projector onto the space of O
states with n vertex anyons ® T

* T moves e anyons

 (C creates and annihilates them




2D anyonic quantum walks N
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*For J>>h the effect of C is perturbatively suppressed

* The Hamiltonian then moves any anyons present in a continuous time quantum walk

H=) Mv’v,tv’v,—FUZv n(n—1)
Mv,v’:]5V,V'+h5<v,v'> e tL", .V,

* Such walks spread quickly, causing logical errors in a time linear with L

* Critical density of anyons is zero in the presence of the field. No errors can be
tolerated.

* Anyonis statistics do not have a significant effect (Pachos et al, 2009)



Disorder in Couplings N
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*Can we suppress the effect of the magnetic field and regain finite critical density?

*Consider disorder in the toric code Hamiltonian

HTC:—ZVJVAV—ZPJPBP M,,=J8, +hs

v,v'>

- J , randomly vary from vertex to vertex

* Theory suggests that Anderson localization will occur

*Random interference exponentially suppresses motion

Z

(Aspect et. al, 2008)



Disorder in Couplings N

UNIVERSITY OF LEED

* Consider sparsely distributed anyon pairs. Only two walker Hamiltonians need be
considered

*Bound can be placed on eigenstates -l _
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Disorder in Couplings N
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*Localized eigenstates prevent the walkers moving freely

* Motion of the walker is exponentially suppressed
8 —dll 8 —dll
P(d,t)<Le “"~(2l)e

* Anyons are bound to an area of radius ~/ around their starting position at all times t.

*This allows a finite anyon density to be tolerable, even in the presence of the field



Disorder and Error Suppression N
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*For an approximation of the critical density, consider a coarse grained lattice

* Anyon pair in each box

*Errors occur when anyons leave A
their boxes

*Due to localization
p<2°le

*Errors correctable when
p<p. p.~0.11

(Dennis, et al)

2\>lln(2819/pc)
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p_.< [l In (28 19 /pc)]_Qand SO not zero



Disorder and Error Suppression N
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*Localization lengths in 2D can be very large

*If too large, it may not be realistic to build codes big enough to benefit from
localization

* Critical anyon density, though non-zero, will then become impractically small

*lt's therefore important to determine the typical values of / for disorder we would
expect to be inherent in realizations of the toric code

* Consider Cauchy distribution around average value J. Disorder parametrized by
width Y



Disorder and Error Suppression N
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* Other disorder strengths were also considered
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Disorder strength, gamma/J
*Length decreases for increased disorder

*May be worth purposefully including disorder in the toric code to enhance localization
effect



Conclusions N
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*Magnetic fields are fatal for the toric code, inducing quantum walks
* This destroys memory in linear time, and sets the critical anyon density to zero

*Disorder inherent in the J's will cause Anderson localization, exponentially
suppressing anyon motion and allowing the critical anyon density to be finite

* Other sources of disorder have also been considered. Using random graphs causes
linear lifetime to become polynomial.

*Random graphs also increase lifetime against thermal errors, which induce classical
random walks of anyons

*Disorder is powerful tool to suppress errors in topological models

* Ultimate goal: thermally stable memories. Could disorder help toward this goal?
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* Thanks for your attention



Random Lattices N
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*We consider random lattices

*These are designed such that
-Number of spins per plaquette and vertex remains small
-Symmetry is maintained between e and m anyons
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Random Lattices N

UNIVERSITY OF LEED

* The speed at which errors build up can be seen from the time taken until the error
probability becomes p=0.1

* This increases linearly with L on the square lattice, but polynomially for the random
lattice 40
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*Lifetime is greatly increased by disorder

*Note also that only %4 of the spins are used



Thermal Errors I
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* Thermal errors induce classical random walks of anyons
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Disorder and Error Suppression N
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*Two walker Hamiltonian - 4
was diagonalized for >
3
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* Probability distribution L
derived from each eigenstate 0'2
*Localization length of the System size, L
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