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Motivation

•The toric code is a quantum memory, protected by topology and a gap
 

•In experiments, memories are subject to stray magnetic fields
 

•Their effect on the gap and on topological order have been well studied
(Bravyi and Hastings 2010; J. Vidal et al 2008; Tsomokos et al 2010)
 

•Here we study their dynamic effects on excited states (Kay 2008; Pastawski, Kay, 
Schuch, Cirac 2009)

 

•Anyonic errors are propagated via quantum walks 
 

•Quantum memory is destroyed in linear time
 

•Can disorder be used to protect the stored information through localization?



  

Overview

•Toric code
•Encoding, errors and anyons
•Hamiltonian and protection

 

•Magnetic fields
•Effects on the toric code
•Quantum walks

 

•Disorder and localization
•Random couplings
•Anderson localization
•Error suppression



  

The toric code

•Proposed by Kitaev (1997)

•Stabilizer code

•Defined on 2D lattice

•Spin-1/2 on edges

•Lattice wrapped around torus
(other surfaces may also be used)



  

The toric code

•Stabilizers defined on spins around each plaquette and vertex

•Quantum information stored in stabilizer
space

•Four dimensional Hilbert space: two logical qubits
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The toric code

•Local spin errors move state out of stabilizer space

•Stabilizers can be measured to determine
whether errors have occurred 

•Best means to correct errors can be
determined and performed

•Single spin errors affect pairs of neighbouring
stabilizers

•Can be interpreted as pair creation of
quasiparticles

•                                 implies an e anyon on v

•Created and moved by        spin errors
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The toric code

•                                 implies an m anyon on p

•Created and moved by         operations

•The anyons have mutual anyonic statistics,
but this will not prove important
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The toric code

•Logical operations correspond to moving anyons around the torus in topologically
non-trivial loops

•Trivial loops have no effect on logical
qubits – equivalent to stabilizers

•Error correction attempts to annihilate
anyons without creating non-trivial loops

•Error correction successful when density
of anyons is less than a critical value

(Dennis, Kitaev, Landahl, Preskill, 2002)
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The toric code

•Quasilocal stabilizers mean Hamiltonian can be implemented

•Degenerate ground state corresponds to stabilizer space

•Encoded information protected by energy gap

•Gap stable against local perturbations (this morning's talk), but information 
vulnerable to dynamic effects (Pastawski)
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Magnetic fields and the toric code

•Consider the perturbation

•       is the projector onto the space of 
  states with n vertex anyons

•       moves e anyons

•       creates and annihilates them
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2D anyonic quantum walks

•For                the effect of C is perturbatively suppressed

•The Hamiltonian then moves any anyons present in a continuous time quantum walk

•Such walks spread quickly, causing logical errors in a time linear with L

•Critical density of anyons is zero in the presence of the field. No errors can be 
tolerated.

•Anyonis statistics do not have a significant effect (Pachos et al, 2009) 
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Disorder in Couplings

•Can we suppress the effect of the magnetic field and regain finite critical density?

•Consider disorder in the toric code Hamiltonian

•          randomly vary from vertex to vertex

•Theory suggests that Anderson localization will occur

•Random interference exponentially suppresses motion

                                          
                                                (Aspect et. al, 2008)
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Disorder in Couplings

•Consider sparsely distributed anyon pairs. Only two walker Hamiltonians need be 
considered

•Bound can be placed on eigenstates

•Hamiltonian localization length     defined as
maximum of all 
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Disorder in Couplings

•Localized eigenstates prevent the walkers moving freely

•Motion of the walker is exponentially suppressed

•Anyons are bound to an area of radius ~l around their starting position at all times t.

•This allows a finite anyon density to be tolerable, even in the presence of the field

Pd , t L8 e−d /l
≈2l 8e−d / l



  

Disorder and Error Suppression

•For an approximation of the critical density, consider a coarse grained lattice

•Anyon pair in each box

•Errors occur when anyons leave
their boxes

•Due to localization

•Errors correctable when

(Dennis, et al)

hence 
                                                             and so not zero
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Disorder and Error Suppression

•Localization lengths in 2D can be very large

•If too large, it may not be realistic to build codes big enough to benefit from 
localization

•Critical anyon density, though non-zero, will then become impractically small

•It's therefore important to determine the typical values of l for disorder we would 
expect to be inherent in realizations of the toric code

•Consider Cauchy distribution around average value J. Disorder parametrized by
width 
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•Other disorder strengths were also considered

•Length decreases for increased disorder

•May be worth purposefully including disorder in the toric code to enhance localization 
effect

l~
−2

c≈10−3

c≈10−2

c≈10−1



  

Conclusions

•Magnetic fields are fatal for the toric code, inducing quantum walks

•This destroys memory in linear time, and sets the critical anyon density to zero

•Disorder inherent in the J's will cause Anderson localization, exponentially 
suppressing anyon motion and allowing the critical anyon density to be finite 

•Other sources of disorder have also been considered. Using random graphs causes 
linear lifetime to become polynomial.

•Random graphs also increase lifetime against thermal errors, which induce classical 
random walks of anyons

•Disorder is powerful tool to suppress errors in topological models

•Ultimate goal: thermally stable memories. Could disorder help toward this goal?



  

The End

•Thanks for your attention



  

Random Lattices

•We consider random lattices

•These are designed such that
-Number of spins per plaquette and vertex remains small
-Symmetry is maintained between e and m anyons

50%

50%
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Random Lattices

•The speed at which errors build up can be seen from the time taken until the error 
probability becomes p=0.1
•This increases linearly with L on the square lattice, but polynomially for the random 
lattice

•Lifetime is greatly increased by disorder

•Note also that only ¾ of the spins are used



  

Thermal Errors

•Thermal errors induce classical random walks of anyons

•Anderson localization not possible

•However, random graphs may still have effect
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•Two walker Hamiltonian 
was diagonalized for

•Probability distribution 
derived from each eigenstate

•Localization length of the 
eigenstate taken to be s.d. of 
distribution

•Localization length of 
Hamiltonian is maximum of 
all these

=J /10 h= J /100
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