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Topological quantum error correcting codes are unique. Their non-trivial syndromes can be inter-
preted as quasiparticles, and logical errors correspond to the propagation of these in topologically
non-trivial loops. Hence, to a much greater extent than other error correcting codes, a wealth of
techniques from physics may be applied to understand the topological codes and enhance their
power. Here we take such an approach, considering the effects of Anderson localization to suppress
errors in the toric code. We find that without it, the quantum memory decoheres in a time linear
with the system size when an external magnetic field is present. However, once the disorder inherent
in physical realizations of the code is taken into account, the localization induced keeps the memory
stable. The means by which the toric code may be redesigned in order to enhance this effect are
then considered. Specifically, we consider the code designed on random lattices. It is found that
this not only slows down the errors caused by an external field, but slows thermal errors also.

The toric code is a topological error correcting code
capable of storing two logical qubits [1, 2]. It is defined
on a two dimensional L × L lattice wrapped around
a torus with a spin-1/2 on each edge. Stabilizers
are defined on the spins around each plaquette and
vertex. A non-trivial syndrome for any of these can be
interpreted as the presence of a quasiparticle, known as
e and m anyons on vertices and plaquettes, respectively.
All properties of the code can then be understood
in terms of these particles, with local errors causing
them to be created in pairs and propagated around the
lattice. Logical errors are formed when anyons move
in topologically non-trivial paths, or when the density
of anyons is so high that they cannot be reliable rean-
nihilated without forming topologically non-trivial loops.

Since the stabilizers of the toric code are quasilocal,
acting only on spins located around the same plaquette
or vertex, they may be implemented in a Hamiltonian.
This has the stabilizer space of the code as its ground
state, and energetically penalise the creation of anyons.
The energy gap will therefore suppress errors, and has
been shown to be stable against local perturbations [3].
Even so, the dynamic effect of such perturbations on
excited states of anyons is known not to enjoy the same
stability [4]. Specifically we study here the effects of an
external magnetic field on the anyons. We find that the
field causes the anyons to move according to quantum
walks [5]. This propagates them at a speed proportional
to the strength of the field, and leads to logical errors
in a time linear with the system size, L. Such a result
is disastrous for the code, since only a single anyon
pair needs to be created by a random process for the
field to completely destroy the stored information. The
critical density of anyons that the code can correct
then becomes zero in the presence of a stray magnetic
field. Realistically we must expect that, in any physical
realization of the toric code, such stray fields will be
present. It is therefore of vital importance to address

this weakness.

Our approach is to apply the phenomenon of Anderson
localization, a well known effect from condensed matter
physics [6–11]. This predicts that the motion of quantum
walks becomes exponentially suppressed in the presence
of disorder. Specifically, the probability that a pair of
anyons move a distance d from their initial positions in
time t is bounded by,

P (d, t) ≤ L4e−d/l. (1)

Here l is the so-called localization length of the system
induced by the disorder. It is l that characterises the
strength of the effect, with small values implying strong
localization. Random fluctuations in the couplings of
the toric code Hamiltonian induce a finite l, and can
therefore be used to prevent anyons causing logical
errors. This will allow the density of anyons to be
tolerated by the code to remain finite, even in the
presence of a field. However, the application of disorder
must be done with care. Any attempts to purposefully
induce disorder will have the side effect of reducing the
gap, and so cause more harm than good. Only the
disorder naturally present in any physical realization
of the code may therefore be used. However, this can
be expected to be weak, and so not induce strong
enough localization to have a significant effect. We
have therefore studied the means to make the most of
this disorder, causing the anyons to be strongly localized.

In our study, we consider the perturbed toric code
Hamiltonian to take the form,

H = −
∑
v

JvAv −
∑
p

JpBp + h
∑
i

σz
i . (2)

The choice of pertubation causes the quantum walks
to be induced for any e anyons present on the system.
Disorder in the Jv will therefore cause localization.
We model this disorder by assigning each Jv a random
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value in the interval J − δ to J + δ, according to a
Cauchy distribution with width γ. Here J is the average
value of the Jv, and the parameters δ and γ govern
the strength of the disorder. For concreteness, the
disorder is evaluated when γ = δ/10 and h = δ/100.
This relations are sufficient to specify the exact effects
of the disorder, and so specific values are not required.
Also, the specific value of J is not required, except that
J > δ must be satisfied to ensure that the Hamiltonian
remains gapped. It is found that localization is indeed
induced, and allows the code to tolerate a finite density
of anyons. Specifically, error correction expected to
succeed as while the density remains less than 10−3. The
fact that a finite density is tolerable in the presence of
a field demonstrates the power of Anderson localization
to successfully suppress errors.

The means to further strengthen the localization effect
are then studied. We consider defining the toric code on
random lattices, rather than the square lattice usually
considered. On its own, this is found not to induce An-
derson localization. However, it does significantly slow
down the spread of errors, causing the time after which a
single pair destroys the stored information to vary poly-
nomially, rather than linearly, with L. As such it will
enhance the localization effect induced by the disordered
Jv.
Having demonstrated how disorder may be used to

suppress the effects of coherent errors induced by a mag-
netic field, we turn our attention to incoherent errors,
such as those caused by a constant temperature. Specif-
ically we model the effects of thermal errors on the toric
code, which move the anyons according to classical ran-
dom walks. This is done for both the square and ran-
dom lattices. Though, since the walks are not coherent,
an effect such as Anderson localization does not occur.
However, the random lattices are numerically seen to sup-

press logical errors. We find that the critical time after
which the thermal errors are uncorrectable is larger for
the random lattice than the square lattice. This opens
up an interesting topic of research, to see how disorder
in lattices affects classical walks of anyons, and whether
it may lead to a new approach for thermally stable quan-
tum memories [12]. If so, this will compliment existing
approaches [13, 14], and bring the realization of quantum
computation ever closer.
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