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Background

Game theory. Game theory is a branch of applied mathematics to model and analyze interactions
of two or more individuals, usually called players, each with a possibly different goal. Over decades
of development, game theory has grown into a rich field on its own, and has found numerous
applications in economics, political science, biology, philosophy, statistics, computer science, etc.
Many models have been proposed to study games, among which the most popular and fundamental
ones are strategic games (or games in strategic or normal form) and extensive games (or games in
extensive form). In the former the players choose their strategies simultaneously, and then each
receives a payoff based on all players’ strategies. In the latter the players choose their strategies
adaptively in turn, and finally when all players finish their moves, each receives a payoff based
on the entire history of strategies of all players. Various settings are also studied. For instance,
if before playing the game, each player also receives a private and random input, then they are
playing a Bayesian game, which belongs to the larger class of games with incomplete information.

Equilibrium as a central solution concept in game theory attempts to capture the situation that
each player has adopted a strategy that is optimal with respect to their own goals. Nash equilibrium
(NE) is the first and most fundamental concept of equilibrium, and it has many extensions such
as correlated equilibrium (CE) which relaxes the requirement of the probability distribution being
independent among the players.

Partially motivated by the emergence of Internet and other systems with a huge number of
players, the concepts of complexity in computer science has been added as one more dimension
for studying games. Many central concepts such as Nash equilibria and important areas such as
mechanism design has been revisited with the algorithmic ingredient injected.
Quantum games: There are mainly two tracks of literature under this name.

1. Nonlocal games, a particular class of Bayesian games in the strategic form. In these games,
each of the two or more parties receives a private input drawn from some known distribution, and
the players output random variables, targeting a particular correlation between their outputs and
inputs. The main goal of designing and studying these games is to show that some correlations are
achievable by quantum entanglement but not classical randomness, thus providing more examples
for Bell’s theorem that refutes Einstein’s program of modeling quantum mechanics as a classical
theory with hidden variables.

2. Quantization of strategic games. Unlike the first track of research motivated by physics (and
computational complexity theory), the second track of work aims at quantizing classical strategic
game theory. There are various models proposed, but the basic approach is to allow each player
i to take quantum operations on her own space Hi = span(Si), where Si is her set of classical
strategies. Then a measurement is made to get a (random) classical joint strategy s, which decides
the payoff of the players by the classical payoff functions ui. Variation exists in details of different
proposed models. For example, in the seminal paper by Eisert, Wilkens and Lewenstein and many
follow-ups, there is an extra party, called Referee, who generates a state J |0〉 by some unitary
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operation J in the Hilbert space of dimension
∑

i |Si|, and partitions the state into k parts (of the
dimensions |S1|, . . . , |Sk| respectively) for the k players. After the k players perform their individual
quantum operations, Referee collects the parts and performs the inverse operation J† on the state
before measuring on the computational basis. The work also assumes that each player only take a
particular subset of unitary operations.

There are many follow-up work on the same or similar models. Despite the rapid accumula-
tion of literature, controversy also exist. For example, Benjamin and Hayden found that if the
assumption on available strategies in is removed, then the proposed state is not an NE any more.

There are actually more literature related to quantum games, which are sporadic on topics, and
has a fewer number of papers on each fixed topic. We just give two examples here. The first one
is the widely-referenced seminal work by Meyer, who demonstrates the power of using quantum
strategies under some particular restriction on the other player’s strategies as well as the sequence
of moves. Another work, which has a closer relation to computer science, studies the general
refereed game in the extensive form. The model adopted there is very general, easily encompassing
all previous work (and the model in our paper) as special cases. It has interesting applications
such as a very short and elegant proof of Kitaev’s lower bound for strong coin-flipping. Of course,
the generality also makes it very challenging to discover many more nontrivial properties.

Our Results

To address the above concerns, we study the quantum strategic games with emphasis on the
asymptotic properties of general games with the least assumption about the quantum strategies.
Recall that in a classical game, Player i chooses a strategy from a set Si, and the joint strategy
decides Player i’s payoff by the payoff function ui(s). Now in our quantum model, starting from
a joint state ρ, each player i can apply a general CPTP map in her local space Hi = span(Si),
and then a measurement is made on the computational basis, getting a random joint strategy s.
Player i then gets an expected payoff Es[ui(s)]. Different than the EWL-model which only allows
a proper subset of unitary operations, we allow arbitrary CPTP maps for each player. In addition,
no referee is involved; namely the operations J and Ĵ are removed. We find this corresponds to the
classical model more naturally because, after all, a classical game does not have a classical referee
to shuffle the whole strategy space S = ×Si before and after the players choose their strategies.

Apart from the model, what mainly distinguishes the present work from the previous ones is the
generality of the classical games under quantization. Most of the previous work focus on particular
games, usually of small and fixed sizes. While it is surely natural to start at particular and small
examples, it is clearly desirable to have a uniform treatment and to understand general properties,
especially when the game has large set of strategies. A fundamental question is:

Question: How much “advantage” can playing quantum strategies provide, if any?

Depending on how the advantage is measured, we study the question in two ways.
1. The advantage is measured by the increase of payoff. We defined the notion of strategic

quantum equilibria as follows. A quantum state ρ in space H = ⊗iHi is a quantum correlated
equilibrium if Player i cannot increase her expected payoff by any local operation. If further
ρ = ⊗iρi for some ρi in Hi, then it is a quantum Nash equilibrium. Under this definition, we studied
various relations between classical and quantum equilibria in both qualitative and quantitative
ways. Given a quantum state, the most natural classical distribution it induces is given by the
measurement on the computational basis S. That is, ρ induces p defined by p(s) = ρs,s. Not
surprisingly, one can show that if ρ is a quantum Nash (or correlated) equilibrium then p is a
classical Nash (or correlated) equilibrium.
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The other direction, namely transition from classical to quantum, is more complicated but more
interesting. A classical distribution p over S have two natural quantum counterparts: 1) classical
mixture: ρ(p) =

∑
s p(s)|s〉〈s|, the mixture of the classical states, and 2) quantum superposition:

|ψ(p)〉 =
∑

s

√
p(s)|s〉, most commonly used superposition of the classical states. We regard the

second mapping as more important because first, this is really quantum, and second this mapping
is the most commonly used quantum superposition of a classical distribution in known quantum
algorithms. It so happens that it is also the most intriguing case of our later theorems. 3) One
can also consider the broad class of quantum states ρ satisfying p(s) = ρs,s, including the above
two concrete functions as special cases. Now the question is, do the transformations keep the
Nash/correlated equilibrium properties? It turns out that the classical mixture mapping keeps
both Nash and correlated equilibria, but the quantum superposition mapping only keeps Nash
equilibria. As to the general class of correspondence, no equilibrium is guaranteed to be kept.

The above relations between classical and quantum equilibria are qualitative aspect, but it is
natural to care about them also quantitatively: After all, if |ψ(p)〉 is not a quantum exact correlated
equilibrium but an ε-approximate one for some small ε, then the interest of using quantum strategies
significantly drops since the quantum advantage is small. In this regard, we ask the following
natural question: In a [0,1]-normalized game, what is the largest gain of payoff by playing a
quantum strategy on a state corresponding to a classical equilibrium?

Theorem 0.1 In a [0, 1]-normalized (n×n)-bimatrix game, 1. there exists a CE p s.t. u1(|ψ(p)〉) =
Õ(1/ log n) but u1(Φ1(|ψ(p)〉)) = 1 − Õ(1/ log n) for some local operation Φ1, and a CE p s.t.
u1(Φ1(|ψ(p′)〉))/u1(|ψ(p′)〉) = n0.585....

2. There exists a Nash equilibrium p, and a quantum state ρ with ρss = p(s), s.t. u1(ρ) = 1/n
but u1(Φ1(ρ)) = 1 for some local quantum operation Φ1. The additive increase of 1− 1/n and the
multiplicative increase of n are the largest possible even for all correlated equilibria p.

The generality of the game, though desirable, also gives us challenges: Finding the maximum
quantum advantage requires to solve a non-convex programming, which is infeasible in general. The
main approach for Part 1 is to construct a large game from smaller ones. Various constructions
exist; what we need is to preserve the equilibrium and increase the gap. It turns out that tensor
product satisfies both criteria, thus the task reduces to study a smaller size problem, with the aim
not at optimizing this small game but optimizing the large one constructed from this small game.
So it becomes designing and analyzing games with original payoff very close to 1 and incentive very
close to 0, which, when taken power, gives large incentive.

2. The advantage is measured by the hardness of generating a correlated equilibrium. We
propose a new complexity measure, correlation complexity, and show that some correlated equilibria
is hard to generate classically but easy to generate quantum mechanically. For a distribution
p = (X,Y ), its correlation complexity is defined as the minimum size of “seed correlation” (X ′, Y ′)
s.t. local operations on X ′ and Y ′ are able to output a sample of (X,Y ). Note that the key
difference to nonlocal games is that no private input is given to Alice and Bob, thus the model is
simpler and thus arguably more fundamental. It turns out that even such a basic model can still
be used to demonstrate the power of quantum mechanics by admitting a large separation between
randomized and quantum correlation complexities.

We give bounds for the quantum correlation complexity by matrix rank, and fully character-
ize the randomized correlation complexity by nonnegative rank, a well-studied measure in linear
algebra with many applications to many other fields. Then we exhibit a family of n-bit distribu-
tions which can be generated by one EPR pair, but at least log2 n classical shared random bits.
We conjecture that a random distribution with quantum correlation complexity 1 has randomized
correlation complexity exactly n.
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