Near-Optimal and Explicit Bell Inequality Violations

Harry Buhrman, Oded Regev, Giannicola Scarpa, Ronald de Wolf

January 2011

QIP 2011

Table of Contents

- 2 The Hidden Matching game
- The Khot-Vishnoi game

Table of Contents

- 2 The Hidden Matching game
- 3 The Khot-Vishnoi game

Conclusions

• Classical physics:

- Locality: no faster than light influences.
- Realism: values are determined before measurement.
- [EPR'35]: Quantum physics seems to violate local realism. Is it wrong or incomplete?
- [Bell'64]: Every local realistic theory must satisfy certain constraints (Bell Inequality).
- Experiments suggest that nature violates Bell Inequalities!

• Classical physics:

- Locality: no faster than light influences.
- Realism: values are determined before measurement.
- [EPR'35]: Quantum physics seems to violate local realism. Is it wrong or incomplete?
- [Bell'64]: Every local realistic theory must satisfy certain constraints (Bell Inequality).
- Experiments suggest that nature violates Bell Inequalities!

• Classical physics:

• Locality: no faster than light influences.

- Realism: values are determined before measurement.
- [EPR'35]: Quantum physics seems to violate local realism. Is it wrong or incomplete?
- [Bell'64]: Every local realistic theory must satisfy certain constraints (Bell Inequality).
- Experiments suggest that nature *violates* Bell Inequalities!

Classical physics:

- Locality: no faster than light influences.
- Realism: values are determined before measurement.
- [EPR'35]: Quantum physics seems to violate local realism. Is it wrong or incomplete?
- [Bell'64]: Every local realistic theory must satisfy certain constraints (Bell Inequality).
- Experiments suggest that nature violates Bell Inequalities!

- Classical physics:
 - Locality: no faster than light influences.
 - Realism: values are determined before measurement.
- [EPR'35]: Quantum physics seems to violate local realism. Is it wrong or incomplete?
- [Bell'64]: Every local realistic theory must satisfy certain constraints (Bell Inequality).
- Experiments suggest that nature violates Bell Inequalities!

- Classical physics:
 - Locality: no faster than light influences.
 - Realism: values are determined before measurement.
- [EPR'35]: Quantum physics seems to violate local realism. Is it wrong or incomplete?
- [Bell'64]: Every local realistic theory must satisfy certain constraints (Bell Inequality).
- Experiments suggest that nature violates Bell Inequalities!

- Classical physics:
 - Locality: no faster than light influences.
 - Realism: values are determined before measurement.
- [EPR'35]: Quantum physics seems to violate local realism. Is it wrong or incomplete?
- [Bell'64]: Every local realistic theory must satisfy certain constraints (Bell Inequality).
- Experiments suggest that nature violates Bell Inequalities!

- Classical physics:
 - Locality: no faster than light influences.
 - Realism: values are determined before measurement.
- [EPR'35]: Quantum physics seems to violate local realism. Is it wrong or incomplete?
- [Bell'64]: Every local realistic theory must satisfy certain constraints (Bell Inequality).
- Experiments suggest that nature violates Bell Inequalities!

- Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.
 Alice outputs a and Bob outputs b.
- A *predicate* specifies winning outputs.
- Goal: maximize winning probability.
- Classical strategies: functions A(x), B(y).
 - The classical value $\omega(G)$ is the maximum winning probability over all classical strategies.
- Quantum strategies: shared *entangled* state; for each x measurement $\{A_a^x\}$; for each y $\{B_b^y\}$.
 - Entangled value $\omega^*(G)$
 - $\omega_n^*(G)$ using entangled state of local dimension $\leq n$.

• Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π .

- A *predicate* specifies winning outputs.
- Goal: maximize winning probability.
- Classical strategies: functions A(x), B(y).
 - The classical value $\omega(G)$ is the maximum winning probability over all classical strategies.
- Quantum strategies: shared *entangled* state; for each x measurement $\{A_a^x\}$; for each $y \{B_b^y\}$.
 - Entangled value $\omega^*(G)$
 - $\omega_n^*(G)$ using entangled state of local dimension $\leq n$.

• Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π .

- A *predicate* specifies winning outputs.
- Goal: maximize winning probability.
- Classical strategies: functions A(x), B(y).
 - The classical value $\omega(G)$ is the maximum winning probability over all classical strategies.
- Quantum strategies: shared *entangled* state; for each x measurement $\{A_a^x\}$; for each y $\{B_b^y\}$.
 - Entangled value $\omega^*(G)$
 - $\omega_n^*(G)$ using entangled state of local dimension $\leq n$.

 Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.

- A *predicate* specifies winning outputs.
- Goal: maximize winning probability.
- Classical strategies: functions A(x), B(y).
 - The classical value $\omega(G)$ is the maximum winning probability over all classical strategies.
- Quantum strategies: shared *entangled* state; for each x measurement $\{A_a^x\}$; for each y $\{B_b^y\}$.
 - Entangled value $\omega^*(G)$
 - $\omega_n^*(G)$ using entangled state of local dimension $\leq n$.

• Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π .

- A *predicate* specifies winning outputs.
- Goal: maximize winning probability.
- Classical strategies: functions A(x), B(y).
 - The classical value $\omega(G)$ is the maximum winning probability over all classical strategies.
- Quantum strategies: shared *entangled* state; for each x measurement $\{A_a^x\}$; for each y $\{B_b^y\}$.
 - Entangled value $\omega^*(G)$.
 - $\omega_n^*(G)$ using entangled state of local dimension $\leq n$.

 Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.

- A *predicate* specifies winning outputs.
- Goal: maximize winning probability.
- Classical strategies: functions A(x), B(y).
 - The classical value $\omega(G)$ is the maximum winning probability over all classical strategies.
- Quantum strategies: shared *entangled* state; for each x measurement $\{A_a^x\}$; for each y $\{B_b^y\}$.
 - Entangled value $\omega^*(G)$.
 - $\omega_n^*(G)$ using entangled state of local dimension $\leq n$.

• Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π .

- A *predicate* specifies winning outputs.
- Goal: maximize winning probability.
- Classical strategies: functions A(x), B(y).
 - The classical value $\omega(G)$ is the maximum winning probability over all classical strategies.
- Quantum strategies: shared *entangled* state; for each x measurement $\{A_a^x\}$; for each y $\{B_b^y\}$.
 - Entangled value $\omega^*(G)$.
 - $\omega_n^*(G)$ using entangled state of local dimension $\leq n$.

 Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.

- A *predicate* specifies winning outputs.
- Goal: maximize winning probability.
- Classical strategies: functions A(x), B(y).
 - The classical value $\omega(G)$ is the maximum winning probability over all classical strategies.
- Quantum strategies: shared *entangled* state; for each x measurement $\{A_a^x\}$; for each y $\{B_b^y\}$.
 - Entangled value $\omega^*(G)$.
 - $\omega_n^*(G)$ using entangled state of local dimension $\leq n$.

- A Bell Inequality is an upper bound on $\omega(G)$.
- Violation: $\omega^*(G)$ larger than $\omega(G)$.

• Quantified by ratio $\frac{\omega^*(G)}{\omega(G)}$

- CHSH [Clauser, Horne, Shimony, Holt, 1969] Classic example where $\frac{\omega_2^*(\text{CHSH})}{\omega(\text{CHSH})} \sim \frac{0.85}{0.75}$
- We want *large violations*!
 - Strong separation between quantum and classical worlds.
 - Typically easier to verify experimentally.

- Local dimension of the entangled state.
- Number of outputs.

- A Bell Inequality is an upper bound on $\omega(G)$.
- Violation: $\omega^*(G)$ larger than $\omega(G)$.

• Quantified by ratio $\frac{\omega^*(G)}{\omega(G)}$.

- CHSH [Clauser, Horne, Shimony, Holt, 1969] ω_2^* (CHSH) 0.85
 - Classic example where $\frac{\omega_2^*(\text{CHSH})}{\omega(\text{CHSH})} \sim \frac{0.85}{0.75}$
- We want large violations!
 - Strong separation between quantum and classical worlds.
 - Typically easier to verify experimentally.

- Local dimension of the entangled state.
- Number of outputs.

- A Bell Inequality is an upper bound on $\omega(G)$.
- Violation: $\omega^*(G)$ larger than $\omega(G)$.
 - Quantified by ratio $\frac{\omega^*(G)}{\omega(G)}$.
- CHSH [Clauser, Horne, Shimony, Holt, 1969] Classic example where $\omega_2^*(\text{CHSH}) = 0.85$
 - Classic example where $\frac{\omega_2^*(\text{CHSH})}{\omega(\text{CHSH})} \sim \frac{0.85}{0.75}$
- We want large violations!
 - Strong separation between quantum and classical worlds.
 - Typically easier to verify experimentally.

- Local dimension of the entangled state.
- Number of outputs.

- A Bell Inequality is an upper bound on $\omega(G)$.
- Violation: $\omega^*(G)$ larger than $\omega(G)$.
 - Quantified by ratio $\frac{\omega^*(G)}{\omega(G)}$.
- CHSH [Clauser, Horne, Shimony, Holt, 1969] Classic example where $\frac{\omega_2^*(\text{CHSH})}{\omega(\text{CHSH})} \sim \frac{0.85}{0.75}$

• We want *large violations*!

• Strong separation between quantum and classical worlds.

• Typically easier to verify experimentally.

- Local dimension of the entangled state.
- Number of outputs.

- A Bell Inequality is an upper bound on $\omega(G)$.
- Violation: $\omega^*(G)$ larger than $\omega(G)$.
 - Quantified by ratio $\frac{\omega^*(G)}{\omega(G)}$.
- CHSH [Clauser, Horne, Shimony, Holt, 1969] Classic example where $\frac{\omega_2^*(\text{CHSH})}{\omega(\text{CHSH})} \sim \frac{0.85}{0.75}$
- We want *large violations*!
 - Strong separation between quantum and classical worlds.
 - Typically easier to verify experimentally.

- Local dimension of the entangled state.
- Number of outputs.

- A Bell Inequality is an upper bound on $\omega(G)$.
- Violation: $\omega^*(G)$ larger than $\omega(G)$.
 - Quantified by ratio $\frac{\omega^*(G)}{\omega(G)}$.
- CHSH [Clauser, Horne, Shimony, Holt, 1969] Classic example where $\frac{\omega_2^*(\text{CHSH})}{\omega(\text{CHSH})} \sim \frac{0.85}{0.75}$
- We want large violations!
 - Strong separation between quantum and classical worlds.
 - Typically easier to verify experimentally.

- Local dimension of the entangled state.
- Number of outputs.

- A Bell Inequality is an upper bound on $\omega(G)$.
- Violation: $\omega^*(G)$ larger than $\omega(G)$.
 - Quantified by ratio $\frac{\omega^*(G)}{\omega(G)}$.
- CHSH [Clauser, Horne, Shimony, Holt, 1969] Classic example where $\frac{\omega_2^*(\text{CHSH})}{\omega(\text{CHSH})} \sim \frac{0.85}{0.75}$
- We want large violations!
 - Strong separation between quantum and classical worlds.
 - Typically easier to verify experimentally.

- Local dimension of the entangled state.
- Number of outputs.

- A Bell Inequality is an upper bound on $\omega(G)$.
- Violation: $\omega^*(G)$ larger than $\omega(G)$.
 - Quantified by ratio $\frac{\omega^*(G)}{\omega(G)}$.
- CHSH [Clauser, Horne, Shimony, Holt, 1969] Classic example where $\frac{\omega_2^*(\text{CHSH})}{\omega(\text{CHSH})} \sim \frac{0.85}{0.75}$
- We want large violations!
 - Strong separation between quantum and classical worlds.
 - Typically easier to verify experimentally.

- Local dimension of the entangled state.
- Number of outputs.

How large can the ratio $\frac{\omega_n^*(G)}{\omega(G)}$ be?

- Upper Bounds:
 - [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with *n*-dimensional entanglement: O(n).
 - [Junge, Palazuelos '10]: with k possible outputs: O(k).

- [Folklore]: n^{ε} by parallel repetition of "magic square".
- [Kempe, Regev, Toner '08]: $n^{\epsilon'}$ from Unique Games.
- [JPPVW'09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP '10]: $\Omega(\sqrt{n}/\log n)$. (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - [Regev '11] reproved this result with probabilistic tools

How large can the ratio $\frac{\omega_n^*(G)}{\omega(G)}$ be?

Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with *n*-dimensional entanglement: O(n).
- [Junge, Palazuelos '10]: with k possible outputs: O(k).

- [Folklore]: n^{ε} by parallel repetition of "magic square".
- [Kempe, Regev, Toner '08]: $n^{\varepsilon'}$ from Unique Games.
- [JPPVW'09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP '10]: $\Omega(\sqrt{n}/\log n)$. (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - [Regev '11] reproved this result with probabilistic tools

How large can the ratio $\frac{\omega_n^*(G)}{\omega(G)}$ be?

Upper Bounds:

• [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with *n*-dimensional entanglement: O(n).

• [Junge, Palazuelos '10]: with k possible outputs: O(k). Lower Bounds:

- [Folklore]: n^{ε} by parallel repetition of "magic square".
- [Kempe, Regev, Toner '08]: $n^{\epsilon'}$ from Unique Games.
- [JPPVW'09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP '10]: $\Omega(\sqrt{n}/\log n)$. (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - [Regev '11] reproved this result with probabilistic tools

How large can the ratio $\frac{\omega_n^*(G)}{\omega(G)}$ be?

Upper Bounds:

• [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with *n*-dimensional entanglement: O(n).

• [Junge, Palazuelos '10]: with k possible outputs: O(k). Lower Bounds:

- [Folklore]: n^{ε} by parallel repetition of "magic square".
- [Kempe, Regev, Toner '08]: $n^{\varepsilon'}$ from Unique Games.
- [JPPVW'09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP '10]: $\Omega(\sqrt{n}/\log n)$. (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - [Regev '11] reproved this result with probabilistic tools

How large can the ratio $\frac{\omega_n^*(G)}{\omega(G)}$ be?

Upper Bounds:

• [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with *n*-dimensional entanglement: O(n).

• [Junge, Palazuelos '10]: with k possible outputs: O(k). Lower Bounds:

- [Folklore]: n^{ε} by parallel repetition of "magic square".
- [Kempe, Regev, Toner '08]: $n^{\varepsilon'}$ from Unique Games.
- [JPPVW'09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP '10]: $\Omega(\sqrt{n}/\log n)$. (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - [Regev '11] reproved this result with probabilistic tools

How large can the ratio $\frac{\omega_n^*(G)}{\omega(G)}$ be?

Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with *n*-dimensional entanglement: O(n).
- [Junge, Palazuelos '10]: with k possible outputs: O(k). Lower Bounds:
 - [Folklore]: n^{ε} by parallel repetition of "magic square".
 - [Kempe, Regev, Toner '08]: $n^{\varepsilon'}$ from Unique Games.
 - [JPPVW'09]: $\Omega(\sqrt{n}/(\log n)^2)$.
 - [JP '10]: $\Omega(\sqrt{n}/\log n)$. (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - [Regev '11] reproved this result with probabilistic tools

How large can the ratio $\frac{\omega_n^*(G)}{\omega(G)}$ be?

Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with *n*-dimensional entanglement: O(n).
- [Junge, Palazuelos '10]: with k possible outputs: O(k).

- [Folklore]: n^{ε} by parallel repetition of "magic square".
- [Kempe, Regev, Toner '08]: $n^{\varepsilon'}$ from Unique Games.
- [JPPVW'09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP '10]: $\Omega(\sqrt{n}/\log n)$. (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - [Regev '11] reproved this result with probabilistic tools.

How large can the ratio $\frac{\omega_n^*(G)}{\omega(G)}$ be?

Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with *n*-dimensional entanglement: O(n).
- [Junge, Palazuelos '10]: with k possible outputs: O(k).

- [Folklore]: n^{ε} by parallel repetition of "magic square".
- [Kempe, Regev, Toner '08]: $n^{\varepsilon'}$ from Unique Games.
- [JPPVW'09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP '10]: $\Omega(\sqrt{n}/\log n)$. (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - [Regev '11] reproved this result with probabilistic tools.

How large can the ratio $\frac{\omega_n^*(G)}{\omega(G)}$ be?

Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with *n*-dimensional entanglement: O(n).
- [Junge, Palazuelos '10]: with k possible outputs: O(k).

- [Folklore]: n^{ε} by parallel repetition of "magic square".
- [Kempe, Regev, Toner '08]: $n^{\varepsilon'}$ from Unique Games.
- [JPPVW'09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP '10]: $\Omega(\sqrt{n}/\log n)$. (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - [Regev '11] reproved this result with probabilistic tools.

What is known?

How large can the ratio $\frac{\omega_n^*(G)}{\omega(G)}$ be?

Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with *n*-dimensional entanglement: O(n).
- [Junge, Palazuelos '10]: with k possible outputs: O(k).

Lower Bounds:

- [Folklore]: n^{ε} by parallel repetition of "magic square".
- [Kempe, Regev, Toner '08]: $n^{\varepsilon'}$ from Unique Games.
- [JPPVW'09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP '10]: $\Omega(\sqrt{n}/\log n)$. (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - [Regev '11] reproved this result with probabilistic tools.

What is known?

How large can the ratio $\frac{\omega_n^*(G)}{\omega(G)}$ be?

Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with *n*-dimensional entanglement: O(n).
- [Junge, Palazuelos '10]: with k possible outputs: O(k).

Lower Bounds:

- [Folklore]: n^{ε} by parallel repetition of "magic square".
- [Kempe, Regev, Toner '08]: $n^{\varepsilon'}$ from Unique Games.
- [JPPVW'09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP '10]: $\Omega(\sqrt{n}/\log n)$. (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - [Regev '11] reproved this result with probabilistic tools.

What is known?

How large can the ratio $\frac{\omega_n^*(G)}{\omega(G)}$ be?

Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with *n*-dimensional entanglement: O(n).
- [Junge, Palazuelos '10]: with k possible outputs: O(k).

Lower Bounds:

- [Folklore]: n^{ε} by parallel repetition of "magic square".
- [Kempe, Regev, Toner '08]: $n^{\varepsilon'}$ from Unique Games.
- [JPPVW'09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP '10]: $\Omega(\sqrt{n}/\log n)$. (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - [Regev '11] reproved this result with probabilistic tools.

Hidden Matching game

- Variant of "Hidden Matching" from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC'04].
- *n* outputs; entanglement dimension *n*.
- Violation of order $\sqrt{n}/\log n$.

- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS'05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS'08]
- n outputs; entanglement dimension n.
- Violation of order $n/(\log n)^2$.

Hidden Matching game

- Variant of "Hidden Matching" from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC'04].
- *n* outputs; entanglement dimension *n*.
- Violation of order $\sqrt{n}/\log n$.

- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS'05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS'08]
- n outputs; entanglement dimension n.
- Violation of order $n/(\log n)^2$.

Hidden Matching game

- Variant of "Hidden Matching" from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC'04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n}/\log n$.

- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS'05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS'08]
- n outputs; entanglement dimension n.
- Violation of order $n/(\log n)^2$.

Hidden Matching game

- Variant of "Hidden Matching" from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC'04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n}/\log n$.

- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS'05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS'08]
- n outputs; entanglement dimension n.
- Violation of order $n/(\log n)^2$.

Hidden Matching game

- Variant of "Hidden Matching" from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC'04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n}/\log n$.

- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS'05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS'08]
- *n* outputs; entanglement dimension *n*.
- Violation of order $n/(\log n)^2$.

Hidden Matching game

- Variant of "Hidden Matching" from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC'04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n}/\log n$.

- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS'05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS'08]
- *n* outputs; entanglement dimension *n*.
- Violation of order $n/(\log n)^2$.

Hidden Matching game

- Variant of "Hidden Matching" from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC'04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n}/\log n$.

- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS'05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS'08]
- n outputs; entanglement dimension n.
- Violation of order $n/(\log n)^2$.

Hidden Matching game

- Variant of "Hidden Matching" from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC'04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n}/\log n$.

- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS'05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS'08]
- n outputs; entanglement dimension n.
- Violation of order $n/(\log n)^2$.

Table of Contents

- 2 The Hidden Matching game
- 3 The Khot-Vishnoi game

4 Conclusions

What are the inputs?

What are the inputs?

They win if $v = x_i \oplus x_j$.

They win if $v = x_i \oplus x_j$.

Thm: Classical winning probability is at most $\frac{1}{2} + O\left(\frac{c}{\sqrt{n}}\right)$ ([BJK'04] proved this for $c = \sqrt{n}$).

They win if $(a \cdot (i \oplus j)) \oplus d = x_i \oplus x_j$.

They win if $(a \cdot (i \oplus j)) \oplus d = x_i \oplus x_j$.

Winning probability 1 with *n*-dimensional *entanglement*.

They win if $(a \cdot (i \oplus j)) \oplus d = x_i \oplus x_j$.

Winning probability 1 with *n*-dimensional *entanglement*. Classical bound $\frac{1}{2} + O\left(\frac{\log n}{\sqrt{n}}\right)$.

They win if $(a \cdot (i \oplus j)) \oplus d = x_i \oplus x_j$.

Winning probability 1 with *n*-dimensional *entanglement*. Classical bound $\frac{1}{2} + O\left(\frac{\log n}{\sqrt{n}}\right)$. **Violation**: $\Omega(\frac{\sqrt{n}}{\log n})$.

Table of Contents

Introduction

- 2 The Hidden Matching game
- The Khot-Vishnoi game

Conclusions

Winning condition: $a \oplus b = z$.

Winning condition: $a \oplus b = z$.

Khot-Vishnoi - Quantum strategy

For any n and $\eta \in [0, 1/2]$, there exists a quantum strategy that wins with probability at least $(1 - 2\eta)^2$.

- For a ∈ {0,1}ⁿ, define |v^a⟩ = ((-1)^{a_i}/√n)_{i∈[n]}.
 For all a, b, ⟨v^a, v^b⟩ = 1 2d(a, b)/n
 The vectors {v^a | a ∈ n} are an orthonormal base
- Quantum strategy (for Alice, similar for Bob):
 - Shared maximally entangled state, local dimension n.
 - On input x, projective measurement $\{v^a \mid a \in x\}$
 - Output the measurement outcome a.

Khot-Vishnoi - Quantum strategy

For any n and $\eta \in [0, 1/2]$, there exists a quantum strategy that wins with probability at least $(1 - 2\eta)^2$.

- For $a \in \{0,1\}^n$, define $|v^a\rangle = ((-1)^{a_i}/\sqrt{n})_{i \in [n]}$.
 - For all $a,b,~\langle v^a,v^b\rangle=1-2d(a,b)/n$
 - The vectors $\{v^a \mid a \in x\}$ are an orthonormal basis of \mathbb{R}^n .
- Quantum strategy (for Alice, similar for Bob):
 - Shared maximally entangled state, local dimension n.
 - On input x, projective measurement $\{v^a \mid a \in x\}$.
 - Output the measurement outcome *a*.

- For $a \in \{0,1\}^n$, define $|v^a\rangle = ((-1)^{a_i}/\sqrt{n})_{i \in [n]}$.
 - For all a, b, $\langle v^a, v^b \rangle = 1 2d(a, b)/n$
 - The vectors $\{v^a \mid a \in x\}$ are an orthonormal basis of \mathbb{R}^n .
- Quantum strategy (for Alice, similar for Bob):
 - Shared maximally entangled state, local dimension n.
 - On input x, projective measurement $\{v^a \mid a \in x\}$.
 - Output the measurement outcome *a*.

- For $a \in \{0,1\}^n$, define $|v^a\rangle = ((-1)^{a_i}/\sqrt{n})_{i \in [n]}$.
 - For all $a,b,~\langle v^a,v^b\rangle=1-2d(a,b)/n$
 - The vectors $\{v^a \mid a \in x\}$ are an orthonormal basis of \mathbb{R}^n .
- Quantum strategy (for Alice, similar for Bob):
 - Shared maximally entangled state, local dimension n.
 - On input x, projective measurement $\{v^a \mid a \in x\}$.
 - Output the measurement outcome *a*.

For any n and $\eta \in [0, 1/2]$, there exists a quantum strategy that wins with probability at least $(1 - 2\eta)^2$.

- For $a \in \{0,1\}^n$, define $|v^a\rangle = ((-1)^{a_i}/\sqrt{n})_{i \in [n]}$.
 - For all $a,b,~\langle v^a,v^b\rangle=1-2d(a,b)/n$
 - The vectors $\{v^a \mid a \in x\}$ are an orthonormal basis of \mathbb{R}^n .

• Quantum strategy (for Alice, similar for Bob):

- Shared maximally entangled state, local dimension n.
- On input x, projective measurement $\{v^a \mid a \in x\}$.
- Output the measurement outcome *a*.

- For $a \in \{0,1\}^n$, define $|v^a\rangle = ((-1)^{a_i}/\sqrt{n})_{i \in [n]}$.
 - For all $a,b,~\langle v^a,v^b\rangle=1-2d(a,b)/n$
 - The vectors $\{v^a \mid a \in x\}$ are an orthonormal basis of \mathbb{R}^n .
- Quantum strategy (for Alice, similar for Bob):
 - Shared maximally entangled state, local dimension n.
 - On input x, projective measurement $\{v^a \mid a \in x\}$.
 - Output the measurement outcome *a*.

- For $a \in \{0,1\}^n$, define $|v^a\rangle = ((-1)^{a_i}/\sqrt{n})_{i \in [n]}$.
 - For all $a,b,~\langle v^a,v^b\rangle=1-2d(a,b)/n$
 - The vectors $\{v^a \mid a \in x\}$ are an orthonormal basis of \mathbb{R}^n .
- Quantum strategy (for Alice, similar for Bob):
 - Shared maximally entangled state, local dimension n.
 - On input x, projective measurement $\{v^a \mid a \in x\}$.
 - Output the measurement outcome *a*.

- For $a \in \{0,1\}^n$, define $|v^a\rangle = ((-1)^{a_i}/\sqrt{n})_{i \in [n]}$.
 - For all $a,b,~\langle v^a,v^b\rangle=1-2d(a,b)/n$
 - The vectors $\{v^a \mid a \in x\}$ are an orthonormal basis of \mathbb{R}^n .
- Quantum strategy (for Alice, similar for Bob):
 - Shared maximally entangled state, local dimension n.
 - On input x, projective measurement $\{v^a \mid a \in x\}$.
 - Output the measurement outcome *a*.

Winning probability is at least $(1 - 2\eta)^2$.

- Probability to obtain a, b is \$\frac{(v^a, v^b)^2}{n}\$.
 Because of the maximally entangled state.
- For inputs x, y, winning probability is $\frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n} \right)^2 = (1 - \frac{2|z|}{n})^2$

• The overall winning probability is $\mathbb{E}_{z}[(1-\frac{2|z|}{n})^{2}] \ge \left(\mathbb{E}_{z}[1-\frac{2|z|}{n}]\right)^{2} = (1-2\eta)^{2}$

Winning probability is at least $(1 - 2\eta)^2$.

- Probability to obtain a, b is \$\frac{(v^a, v^b)^2}{n}\$.
 Because of the maximally entangled state.
- For inputs x, y, winning probability is $\frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n} \right)^2 = (1 - \frac{2|z|}{n})^2$

• The overall winning probability is $\mathbb{E}_{z}[(1-\frac{2|z|}{n})^{2}] \ge \left(\mathbb{E}_{z}[1-\frac{2|z|}{n}]\right)^{2} = (1-2\eta)^{2}$

Winning probability is at least $(1 - 2\eta)^2$.

Probability to obtain a, b is (v^a,v^b)²/n.
Because of the maximally entangled state.
For inputs x, y, winning probability is

1/n Σ_{a∈x} (v^a, v^{a⊕z})² = 1/n Σ_{a∈x} (1 - (2d(a, a ⊕ z))/n)² = (1 - (2|z|)/n)².

The overall winning probability is

E_z[(1 - (2|z|)/n)²] ≥ (E_z[1 - (2|z|)/n)² = (1 - 2η)²

Winning probability is at least $(1 - 2\eta)^2$.

- Probability to obtain a, b is \$\frac{\lambda v^a, v^b \rangle^2}{n}\$.
 Because of the maximally entangled state.
- For inputs x, y, winning probability is $\frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n} \right)^2 = (1 - \frac{2|z|}{n})^2.$ • The overall winning probability is $\mathbb{E}_z[(1 - \frac{2|z|}{n})^2] \ge \left(\mathbb{E}_z[1 - \frac{2|z|}{n}]\right)^2 = (1 - 2\eta)^2$

Winning probability is at least $(1 - 2\eta)^2$.

- Probability to obtain a, b is $\frac{\langle v^a, v^b \rangle^2}{n}$.
 - Because of the maximally entangled state.

• For inputs x, y, winning probability is

$$\frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n} \right)^2 = (1 - \frac{2|z|}{n})^2.$$

The overall winning probability is
$$\mathbb{E}_z [(1 - \frac{2|z|}{n})^2] \ge \left(\mathbb{E}_z [1 - \frac{2|z|}{n}] \right)^2 = (1 - 2\eta)^2$$

Winning probability is at least $(1 - 2\eta)^2$.

- Probability to obtain a, b is $\frac{\langle v^a, v^b \rangle^2}{n}$.
 - Because of the maximally entangled state.

• For inputs x, y, winning probability is

$$\frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n} \right)^2 = (1 - \frac{2|z|}{n})^2.$$

The overall winning probability is
$$\mathbb{E}_z [(1 - \frac{2|z|}{n})^2] \ge \left(\mathbb{E}_z [1 - \frac{2|z|}{n}] \right)^2 = (1 - 2\eta)^2$$

Winning probability is at least $(1-2\eta)^2$.

- Probability to obtain a, b is $\frac{\langle v^a, v^b \rangle^2}{n}$.
 - Because of the maximally entangled state.

• For inputs x, y, winning probability is $\frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n} \right)^2 = (1 - \frac{2|z|}{n})^2.$

• The overall winning probability is $\mathbb{E}_{z}[(1 - \frac{2|z|}{n})^{2}] \ge \left(\mathbb{E}_{z}[1 - \frac{2|z|}{n}]\right)^{2} = (1 - 2\eta)^{2}$

Winning probability is at least $(1-2\eta)^2$.

- Probability to obtain a, b is $\frac{\langle v^a, v^b \rangle^2}{n}$.
 - Because of the maximally entangled state.

• For inputs x, y, winning probability is $\frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n} \right)^2 = (1 - \frac{2|z|}{n})^2.$

• The overall winning probability is $\mathbb{E}_{z}[(1 - \frac{2|z|}{n})^{2}] \ge \left(\mathbb{E}_{z}[1 - \frac{2|z|}{n}]\right)^{2} = (1 - 2\eta)^{2}$

Winning probability is at least $(1-2\eta)^2$.

- Probability to obtain a, b is $\frac{\langle v^a, v^b \rangle^2}{n}$.
 - Because of the maximally entangled state.

• For inputs x, y, winning probability is $\frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n} \right)^2 = (1 - \frac{2|z|}{n})^2.$

• The overall winning probability is

$$\mathbb{E}_{\boldsymbol{z}}[(1-\frac{2|\boldsymbol{z}|}{n})^2] \ge \left(\mathbb{E}_{\boldsymbol{z}}[1-\frac{2|\boldsymbol{z}|}{n}]\right)^2 = (1-2\eta)^2$$

Winning probability is at least $(1-2\eta)^2$.

- Probability to obtain a, b is $\frac{\langle v^a, v^b \rangle^2}{n}$.
 - Because of the maximally entangled state.

• For inputs x, y, winning probability is $\frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n} \right)^2 = (1 - \frac{2|z|}{n})^2.$

• The overall winning probability is

$$\mathbb{E}_{\boldsymbol{z}}[(1-\frac{2|\boldsymbol{z}|}{n})^2] \ge \left(\mathbb{E}_{\boldsymbol{z}}[1-\frac{2|\boldsymbol{z}|}{n}]\right)^2 = (1-2\eta)^2$$

Winning probability is at least $(1-2\eta)^2$.

- Probability to obtain a, b is $\frac{\langle v^a, v^b \rangle^2}{n}$.
 - Because of the maximally entangled state.

• For inputs x, y, winning probability is $\frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n} \right)^2 = (1 - \frac{2|z|}{n})^2.$

• The overall winning probability is $\mathbb{E}_{z}[(1-\frac{2|z|}{n})^{2}] \geq \left(\mathbb{E}_{z}[1-\frac{2|z|}{n}]\right)^{2} = (1-2\eta)^{2}$

Winning probability is at least $(1 - 2\eta)^2$.

- Probability to obtain a, b is $\frac{\langle v^a, v^b \rangle^2}{n}$.
 - Because of the maximally entangled state.

• For inputs x, y, winning probability is $\frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n} \right)^2 = (1 - \frac{2|z|}{n})^2.$

• The overall winning probability is $\mathbb{E}_{z}[(1-\frac{2|z|}{n})^{2}] \geq \left(\mathbb{E}_{z}[1-\frac{2|z|}{n}]\right)^{2} = (1-2\eta)^{2}$

Every classical strategy has winning probability $\leq 1/n^{\eta/(1-\eta)}$

- Fix strategy. Functions A, B : {0,1}ⁿ → {0,1}.
 A(u) = 1 ⇔ Alice's output on coset u ⊕ H is u.
 ℝ_u[A(u)] = 1/n (Alice chooses one element per co
 - Players win $\Leftrightarrow \sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h) = 1.$
- Winning probability is $\mathop{\mathbb{E}}_{u,z} [\sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)]$

 $=\sum_{h\in H} \mathop{\mathbb{E}}_{u,z} [A(u\oplus h)B(u\oplus z\oplus h)] = n \mathop{\mathbb{E}}_{u,z} [A(u)B(u\oplus z)]$

We have that E[A(u)B(u ⊕ z)] ≤ 1/(n^{1/(1-η)}) (proof by hypercontractivity, next slide).
 Theorem follows by noting that n ⋅ 1/(n^{1/(1-η)}) = 1/(n^{1/(1-η)}).

Every classical strategy has winning probability $\leq 1/n^{\eta/(1-\eta)}$

- Fix strategy. Functions $A, B : \{0, 1\}^n \rightarrow \{0, 1\}$.
 - $A(u) = 1 \Leftrightarrow Alice's$ output on coset $u \oplus H$ is u.
 - ■ *E*_u[*A*(*u*)] = 1/*n* (Alice chooses one element per coset)
 - Players win $\Leftrightarrow \sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h) = 1.$
- Winning probability is $\mathop{\mathbb{E}}_{u,z}[\sum_{h\in H}A(u\oplus h)B(u\oplus z\oplus h)]$

 $= \sum_{h \in H} \mathop{\mathbb{E}}_{u,z} [A(u \oplus h)B(u \oplus z \oplus h)] = n \mathop{\mathbb{E}}_{u,z} [A(u)B(u \oplus z)]$

We have that E[A(u)B(u ⊕ z)] ≤ 1/(n^{1/(1-η)}) (proof by hypercontractivity, next slide).
 Theorem follows by noting that n ⋅ 1/(n^{1/(1-η)}) = 1/(n^{1/(1-η)}).

Every classical strategy has winning probability $\leq 1/n^{\eta/(1-\eta)}$

- Fix strategy. Functions $A, B : \{0, 1\}^n \rightarrow \{0, 1\}$.
 - $A(u) = 1 \Leftrightarrow Alice's$ output on coset $u \oplus H$ is u.
 - ■ *E*_u[*A*(*u*)] = 1/*n* (Alice chooses one element per coset)
 - Players win $\Leftrightarrow \sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h) = 1.$
- Winning probability is $\mathop{\mathbb{E}}_{u,z}[\sum_{h\in H}A(u\oplus h)B(u\oplus z\oplus h)]$

 $= \sum_{h \in H} \mathop{\mathbb{E}}_{u,z} [A(u \oplus h)B(u \oplus z \oplus h)] = n \mathop{\mathbb{E}}_{u,z} [A(u)B(u \oplus z)]$

We have that E[A(u)B(u ⊕ z)] ≤ 1/(n^{1/(1-η)}) (proof by hypercontractivity, next slide).
 Theorem follows by noting that n ⋅ 1/(n^{1/(1-η)}) = 1/(n^{1/(1-η)}).

Every classical strategy has winning probability $\leq 1/n^{\eta/(1-\eta)}$

- Fix strategy. Functions $A, B : \{0, 1\}^n \rightarrow \{0, 1\}$.
 - $A(u) = 1 \Leftrightarrow \text{Alice's output on coset } u \oplus H \text{ is } u.$
 - $\mathbb{E}_u[A(u)] = 1/n$ (Alice chooses one element per coset)
 - Players win $\Leftrightarrow \sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h) = 1.$
- Winning probability is $\mathop{\mathbb{E}}_{u,z}[\sum_{h\in H}A(u\oplus h)B(u\oplus z\oplus h)]$

 $= \sum_{h \in H} \mathop{\mathbb{E}}_{u,z} [A(u \oplus h)B(u \oplus z \oplus h)] = n \mathop{\mathbb{E}}_{u,z} [A(u)B(u \oplus z)]$

We have that E[A(u)B(u ⊕ z)] ≤ 1/(n^1/(1-η)) (proof by hypercontractivity, next slide).
 Theorem follows by noting that n ⋅ 1/(1-η) = 1/(1-η) = 1/(1-η).

Every classical strategy has winning probability $\leq 1/n^{\eta/(1-\eta)}$

- Fix strategy. Functions $A, B : \{0, 1\}^n \rightarrow \{0, 1\}$.
 - $A(u) = 1 \Leftrightarrow \text{Alice's output on coset } u \oplus H \text{ is } u.$
 - $\mathbb{E}_u[A(u)] = 1/n$ (Alice chooses one element per coset)
 - Players win $\Leftrightarrow \sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h) = 1.$
- Winning probability is $\mathop{\mathbb{E}}_{u,z}[\sum_{h\in H}A(u\oplus h)B(u\oplus z\oplus h)]$

 $= \sum_{h \in H} \mathop{\mathbb{E}}_{u,z} [A(u \oplus h)B(u \oplus z \oplus h)] = n \mathop{\mathbb{E}}_{u,z} [A(u)B(u \oplus z)]$

We have that E[A(u)B(u ⊕ z)] ≤ 1/(n^{1/(1-η)}) (proof by hypercontractivity, next slide).
 Theorem follows by noting that n ⋅ 1/(n^{1/(1-η)}) = 1/(n^{1/(1-η)}).

Every classical strategy has winning probability $\leq 1/n^{\eta/(1-\eta)}$

- Fix strategy. Functions $A, B : \{0, 1\}^n \rightarrow \{0, 1\}$.
 - $A(u) = 1 \Leftrightarrow \text{Alice's output on coset } u \oplus H \text{ is } u.$
 - $\mathbb{E}_u[A(u)] = 1/n$ (Alice chooses one element per coset)
 - Players win $\Leftrightarrow \sum_{h\in H} A(u\oplus h)B(u\oplus z\oplus h)=1.$
- Winning probability is $\mathop{\mathbb{E}}_{u,z}[\sum_{h\in H}A(u\oplus h)B(u\oplus z\oplus h)]$

 $= \sum_{h \in H} \mathop{\mathbb{E}}_{u,z} [A(u \oplus h)B(u \oplus z \oplus h)] = n \mathop{\mathbb{E}}_{u,z} [A(u)B(u \oplus z)]$

We have that E[A(u)B(u⊕z)] ≤ 1/(n^{1/(1-\eta)}) (proof by hypercontractivity, next slide).
 Theorem follows by noting that n · 1/(1-n) = 1/(1-n).

Every classical strategy has winning probability $\leq 1/n^{\eta/(1-\eta)}$

- Fix strategy. Functions $A, B : \{0, 1\}^n \rightarrow \{0, 1\}$.
 - $A(u) = 1 \Leftrightarrow \mathsf{Alice's} \text{ output on coset } u \oplus H \text{ is } u.$
 - $\mathbb{E}_u[A(u)] = 1/n$ (Alice chooses one element per coset)
 - Players win $\Leftrightarrow \sum_{h\in H} A(u\oplus h)B(u\oplus z\oplus h) = 1.$
- \bullet Winning probability is $\mathop{\mathbb{E}}_{u,z}[\sum_{h\in H}A(u\oplus h)B(u\oplus z\oplus h)]$

 $=\sum_{h\in H} \mathop{\mathbb{E}}_{u,z} [A(u\oplus h)B(u\oplus z\oplus h)] = n \mathop{\mathbb{E}}_{u,z} [A(u)B(u\oplus z)]$

 We have that E[A(u)B(u ⊕ z)] ≤ 1/(1-η) (proof by hypercontractivity, next slide).
 Theorem follows by noting that n ⋅ 1/(1-η) = 1/(1-η).

Every classical strategy has winning probability $\leq 1/n^{\eta/(1-\eta)}$

- Fix strategy. Functions $A, B : \{0, 1\}^n \rightarrow \{0, 1\}$.
 - $A(u) = 1 \Leftrightarrow \mathsf{Alice's} \text{ output on coset } u \oplus H \text{ is } u.$
 - $\mathbb{E}_u[A(u)] = 1/n$ (Alice chooses one element per coset)
 - Players win $\Leftrightarrow \sum_{h\in H} A(u\oplus h)B(u\oplus z\oplus h) = 1.$
- \bullet Winning probability is $\mathop{\mathbb{E}}_{u,z}[\sum_{h\in H}A(u\oplus h)B(u\oplus z\oplus h)]$

 $=\sum_{h\in H} \mathop{\mathbb{E}}_{u,z} [A(u\oplus h)B(u\oplus z\oplus h)] = n \mathop{\mathbb{E}}_{u,z} [A(u)B(u\oplus z)]$

 We have that E[A(u)B(u ⊕ z)] ≤ 1/(1-η) (proof by hypercontractivity, next slide).
 Theorem follows by noting that n ⋅ 1/(1-η) = 1/(1-η).

Every classical strategy has winning probability $\leq 1/n^{\eta/(1-\eta)}$

- Fix strategy. Functions $A, B : \{0, 1\}^n \rightarrow \{0, 1\}$.
 - $A(u) = 1 \Leftrightarrow \text{Alice's output on coset } u \oplus H \text{ is } u.$
 - $\mathbb{E}_u[A(u)] = 1/n$ (Alice chooses one element per coset)
 - Players win $\Leftrightarrow \sum_{h\in H} A(u\oplus h)B(u\oplus z\oplus h) = 1.$
- Winning probability is $\mathop{\mathbb{E}}_{u,z}[\sum_{h\in H}A(u\oplus h)B(u\oplus z\oplus h)]$

 $= \sum_{h \in H} \mathop{\mathbb{E}}_{u,z} [A(u \oplus h)B(u \oplus z \oplus h)] = n \mathop{\mathbb{E}}_{u,z} [A(u)B(u \oplus z)]$

We have that E[A(u)B(u ⊕ z)] ≤ 1/(n^{1/(1-\eta)}) (proof by hypercontractivity, next slide).
 Theorem follows by noting that n · 1/(1-\eta) = 1/(1-\eta) = 1/(1-\eta).

Every classical strategy has winning probability $\leq 1/n^{\eta/(1-\eta)}$

- Fix strategy. Functions $A, B : \{0, 1\}^n \rightarrow \{0, 1\}$.
 - $A(u) = 1 \Leftrightarrow \text{Alice's output on coset } u \oplus H \text{ is } u.$
 - $\mathbb{E}_u[A(u)] = 1/n$ (Alice chooses one element per coset)
 - Players win $\Leftrightarrow \sum_{h\in H} A(u\oplus h)B(u\oplus z\oplus h) = 1.$
- Winning probability is $\mathop{\mathbb{E}}_{u,z}[\sum_{h\in H}A(u\oplus h)B(u\oplus z\oplus h)]$

 $=\sum_{h\in H}\mathop{\mathbb{E}}_{u,z}[A(u\oplus h)B(u\oplus z\oplus h)]=n\mathop{\mathbb{E}}_{u,z}[A(u)B(u\oplus z)]$

We have that E[A(u)B(u ⊕ z)] ≤ 1/(n^{1/(1-η)}) (proof by hypercontractivity, next slide).
 Theorem follows by noting that n ⋅ 1/(1-η) = 1/(1-η) = 1/(1-η).

Every classical strategy has winning probability $\leq 1/n^{\eta/(1-\eta)}$

- Fix strategy. Functions $A, B : \{0, 1\}^n \rightarrow \{0, 1\}$.
 - $A(u) = 1 \Leftrightarrow \mathsf{Alice's} \text{ output on coset } u \oplus H \text{ is } u.$
 - $\mathbb{E}_u[A(u)] = 1/n$ (Alice chooses one element per coset)
 - Players win $\Leftrightarrow \sum_{h \in H} \underline{A(u \oplus h)} B(u \oplus z \oplus h) = 1.$
- Winning probability is $\mathop{\mathbb{E}}_{u,z}[\sum_{h\in H}A(u\oplus h)B(u\oplus z\oplus h)]$

 $= \sum_{h \in H} \mathop{\mathbb{E}}_{u,z} [A(u \oplus h)B(u \oplus z \oplus h)] = n \mathop{\mathbb{E}}_{u,z} [A(u)B(u \oplus z)]$

We have that E[A(u)B(u⊕z)] ≤ 1/(n^{1/(1-η)}) (proof by hypercontractivity, next slide).
Theorem follows by noting that n ⋅ 1/(n^{1/(1-η)}) = 1/(n^{1/(1-η)}).

Every classical strategy has winning probability $\leq 1/n^{\eta/(1-\eta)}$

- Fix strategy. Functions $A, B : \{0, 1\}^n \rightarrow \{0, 1\}$.
 - $A(u) = 1 \Leftrightarrow \mathsf{Alice's} \text{ output on coset } u \oplus H \text{ is } u.$
 - $\mathbb{E}_u[A(u)] = 1/n$ (Alice chooses one element per coset)
 - Players win $\Leftrightarrow \sum_{h \in H} \underline{A(u \oplus h)} B(u \oplus z \oplus h) = 1.$
- Winning probability is $\mathop{\mathbb{E}}_{u,z}[\sum_{h\in H}A(u\oplus h)B(u\oplus z\oplus h)]$

 $= \sum_{h \in H} \mathop{\mathbb{E}}_{u,z} [A(u \oplus h)B(u \oplus z \oplus h)] = n \mathop{\mathbb{E}}_{u,z} [A(u)B(u \oplus z)]$

We have that E_{u,z}[A(u)B(u ⊕ z)] ≤ 1/(n^{1/(1-\eta)}) (proof by hypercontractivity, next slide).
Theorem follows by noting that n ⋅ 1/(n^{1/(1-\eta)}) = 1/(n^{1/(1-\eta)}).

 $\mathbb{E}_{u,z}[A(u)B(u\oplus z)]$ = $\mathbb{E}_{u}[A(u) \cdot (T_{1-2n}B)(u)]$ $(T_{1-2\eta}F)(u) = \mathbb{E}_{z}[F(u\oplus z)]$ noise operator

- $= \mathbb{E}_u[(T_{\sqrt{1-2\eta}}A)(u) \cdot (T_{\sqrt{1-2\eta}}B)(u)]$
- $\leq \left\| T_{\sqrt{1-2\eta}} A \right\|_2 \cdot \left\| T_{\sqrt{1-2\eta}} B \right\|_2$
- $\leq \|A\|_{2-2\eta} \cdot \|B\|_{2-2\eta}$

$$\begin{split} \|T_{\rho}F\|_2 \leq \|F\|_{1+\rho^2} \\ \text{hypercontractive inequality} \end{split}$$

 $= (\mathbb{E}_u[A(u)])^{1/(2-2\eta)} \cdot (\mathbb{E}_u[B(u)])^{1/(2-2\eta)}$

 $\mathbb{E}_u[A(u)] = 1/i$

$$\mathbb{E}_{u,z}[A(u)B(u\oplus z)]$$

= $\mathbb{E}_u[A(u) \cdot (T_{1-2\eta}B)(u)]$

 $(T_{1-2\eta}F)(u) = \mathbb{E}_z[F(u\oplus z)]$ noise operator

- $= \mathbb{E}_u[(T_{\sqrt{1-2\eta}}A)(u) \cdot (T_{\sqrt{1-2\eta}}B)(u)]$
- $\leq \left\| T_{\sqrt{1-2\eta}} A \right\|_2 \cdot \left\| T_{\sqrt{1-2\eta}} B \right\|_2$
- $\leq \|A\|_{2-2\eta} \cdot \|B\|_{2-2\eta}$

$$\begin{split} \|T_{\rho}F\|_2 \leq \|F\|_{1+\rho^2} \\ \text{hypercontractive inequality} \end{split}$$

 $= (\mathbb{E}_u[A(u)])^{1/(2-2\eta)} \cdot (\mathbb{E}_u[B(u)])^{1/(2-2\eta)}$

 $\mathbb{E}_u[A(u)] = 1/i$

$$\mathbb{E}_{u,z}[A(u)B(u\oplus z)]$$

 $= \mathbb{E}_{u}[A(u) \cdot (T_{1-2\eta}B)(u)]$

 $(T_{1-2\eta}F)(u) = \mathbb{E}_z[F(u\oplus z)]$ noise operator

$$= \mathbb{E}_u[(T_{\sqrt{1-2\eta}}A)(u) \cdot (T_{\sqrt{1-2\eta}}B)(u)]$$

$$\leq \left\| T_{\sqrt{1-2\eta}}A \right\|_2 \cdot \left\| T_{\sqrt{1-2\eta}}B \right\|_2$$

 $\leq \|A\|_{2-2\eta} \cdot \|B\|_{2-2\eta}$

 $\|T_{\rho}F\|_2 \leq \|F\|_{1+\rho^2}$ hypercontractive inequality

 $= (\mathbb{E}_u[A(u)])^{1/(2-2\eta)} \cdot (\mathbb{E}_u[B(u)])^{1/(2-2\eta)}$

 $\mathbb{E}_u[A(u)] = 1/4$

$$\mathbb{E}_{u,z}[A(u)B(u\oplus z)]$$

$$= \mathbb{E}_u[A(u) \cdot (T_{1-2\eta}B)(u)]$$

 $(T_{1-2\eta}F)(u) = \mathbb{E}_z[F(u\oplus z)]$ noise operator

$$= \mathbb{E}_{u}[(T_{\sqrt{1-2\eta}}A)(u) \cdot (T_{\sqrt{1-2\eta}}B)(u)]$$
$$\leq \left\|T_{\sqrt{1-2\eta}}A\right\|_{2} \cdot \left\|T_{\sqrt{1-2\eta}}B\right\|_{2}$$

 $\leq \|A\|_{2-2\eta} \cdot \|B\|_{2-2\eta} \qquad \qquad \|T_{\rho}F\|_2 \leq \frac{\|T_{\rho}F\|_2}{|\mathsf{hypercontra}|} \leq \frac{\|T_{\rho}F\|_2}{|\mathsf{hypercontra}$

 $\|T_{\rho}F\|_2 \leq \|F\|_{1+\rho^2}$ hypercontractive inequality

 $= (\mathbb{E}_u[A(u)])^{1/(2-2\eta)} \cdot (\mathbb{E}_u[B(u)])^{1/(2-2\eta)}$

 $\mathbb{E}_u[A(u)] = 1/i$

$$\mathbb{E}_{u,z}[A(u)B(u\oplus z)]$$

$$= \mathbb{E}_u[A(u) \cdot (T_{1-2\eta}B)(u)]$$

 $(T_{1-2\eta}F)(u) = \mathbb{E}_{z}[F(u\oplus z)]$ noise operator

$$= \mathbb{E}_u[(T_{\sqrt{1-2\eta}}A)(u) \cdot (T_{\sqrt{1-2\eta}}B)(u)]$$

$$\leq \left\| T_{\sqrt{1-2\eta}} A \right\|_2 \cdot \left\| T_{\sqrt{1-2\eta}} B \right\|_2$$

$$\leq \|A\|_{2-2\eta} \cdot \|B\|_{2-2\eta}$$

 $\|T_{\rho}F\|_2 \leq \|F\|_{1+\rho^2}$ hypercontractive inequality

 $= (\mathbb{E}_u[A(u)])^{1/(2-2\eta)} \cdot (\mathbb{E}_u[B(u)])^{1/(2-2\eta)}$

 $\mathbb{E}_u[A(u)] = 1/i$

$$\mathbb{E}_{u,z}[A(u)B(u\oplus z)]$$

 $= \mathbb{E}_{u}[A(u) \cdot (T_{1-2\eta}B)(u)]$

 $(T_{1-2\eta}F)(u) = \mathbb{E}_z[F(u\oplus z)]$ noise operator

$$= \mathbb{E}_u[(T_{\sqrt{1-2\eta}}A)(u) \cdot (T_{\sqrt{1-2\eta}}B)(u)]$$

$$\leq \left\| T_{\sqrt{1-2\eta}} A \right\|_2 \cdot \left\| T_{\sqrt{1-2\eta}} B \right\|_2$$

$$\leq \|A\|_{2-2\eta} \cdot \|B\|_{2-2\eta}$$

 $||T_{\rho}F||_2 \leq ||F||_{1+\rho^2}$ hypercontractive inequality

 $= (\mathbb{E}_u[A(u)])^{1/(2-2\eta)} \cdot (\mathbb{E}_u[B(u)])^{1/(2-2\eta)}$

 $\mathbb{E}_u[A(u)] = 1/r$

Khot-Vishnoi - Classical bound (2)

$$\mathbb{E}_{u,z}[A(u)B(u\oplus z)]$$

$$= \mathbb{E}_u[A(u) \cdot (T_{1-2\eta}B)(u)]$$

 $(T_{1-2n}F)(u) = \mathbb{E}_z[F(u \oplus z)]$ noise operator

$$= \mathbb{E}_u[(T_{\sqrt{1-2\eta}}A)(u) \cdot (T_{\sqrt{1-2\eta}}B)(u)]$$

$$\leq \left\| T_{\sqrt{1-2\eta}} A \right\|_2 \cdot \left\| T_{\sqrt{1-2\eta}} B \right\|_2$$

$$\leq \|A\|_{2-2\eta} \cdot \|B\|_{2-2\eta}$$

 $= \frac{1}{n^{1/(1-\eta)}}.$

 $||T_{\rho}F||_{2} \leq ||F||_{1+\rho^{2}}$ hypercontractive inequality

$$= (\mathbb{E}_u[A(u)])^{1/(2-2\eta)} \cdot (\mathbb{E}_u[B(u)])^{1/(2-2\eta)}$$

 $\mathbb{E}_u[A(u)] = 1/n$

KV Bell Inequality violation

Setting $\eta = \frac{1}{2} - \frac{1}{\log n}$

- Entangled value $(1-2\eta)^2 \sim \frac{1}{(\log n)^2}$
- Classical value is roughly $rac{1}{n^{\eta/(1-\eta)}} \sim rac{1}{n}$

• Violation
$$\frac{\omega_n^*(\text{KV})}{\omega(\text{KV})} = \Omega(\frac{n}{(\log n)^2})$$

 Close to optimal, both in terms of local dimension and number of outputs.

KV Bell Inequality violation

Setting $\eta = \frac{1}{2} - \frac{1}{\log n}$

- Entangled value $(1 2\eta)^2 \sim \frac{1}{(\log n)^2}$
- Classical value is roughly $rac{1}{n^{\eta/(1-\eta)}} \sim rac{1}{n}$

• Violation
$$\frac{\omega_n^*(\text{KV})}{\omega(\text{KV})} = \Omega(\frac{n}{(\log n)^2})$$

• Close to optimal, both in terms of local dimension and number of outputs.

KV Bell Inequality violation

Setting $\eta = \frac{1}{2} - \frac{1}{\log n}$

- Entangled value $(1-2\eta)^2 \sim \frac{1}{(\log n)^2}$
- Classical value is roughly $\frac{1}{n^{\eta/(1-\eta)}} \sim \frac{1}{n}$
- Violation $\frac{\omega_n^*(\mathrm{KV})}{\omega(\mathrm{KV})} = \Omega(\frac{n}{(\log n)^2})$
- Close to optimal, both in terms of local dimension and number of outputs.

KV Bell Inequality violation

Setting $\eta = \frac{1}{2} - \frac{1}{\log n}$

- Entangled value $(1-2\eta)^2 \sim \frac{1}{(\log n)^2}$
- Classical value is roughly $\frac{1}{n^{\eta/(1-\eta)}} \sim \frac{1}{n}$

• Violation
$$\frac{\omega_n^*(\mathrm{KV})}{\omega(\mathrm{KV})} = \Omega(\frac{n}{(\log n)^2})$$

• Close to optimal, both in terms of local dimension and number of outputs.

KV Bell Inequality violation

Setting $\eta = \frac{1}{2} - \frac{1}{\log n}$

- Entangled value $(1-2\eta)^2 \sim \frac{1}{(\log n)^2}$
- Classical value is roughly $\frac{1}{n^{\eta/(1-\eta)}} \sim \frac{1}{n}$

• Violation
$$\frac{\omega_n^*(\mathsf{KV})}{\omega(\mathsf{KV})} = \Omega(\frac{n}{(\log n)^2})$$

• Close to optimal, both in terms of local dimension and number of outputs.

Table of Contents

Introduction

- 2 The Hidden Matching game
- 3 The Khot-Vishnoi game

Comparison

	JP	HM	KV
Local Dim	n	n	n
#Outputs	n	n	n
#Inputs	n	$2^n, \frac{n}{2}$	$\frac{2^n}{n}$
Violation	$\frac{\sqrt{n}}{\log n}$	$\frac{\sqrt{n}}{\log n}$	$\frac{n}{(\log n)^2}$

- Close the gap with the upper bound O(n).
- Reduce the number of *inputs*.
- Consider games with more than two players.

Comparison

	JP	НМ	KV
Local Dim	n	n	n
#Outputs	n	n	n
#Inputs	n	$2^n, \frac{n}{2}$	$\frac{2^n}{n}$
Violation	$\frac{\sqrt{n}}{\log n}$	$\frac{\sqrt{n}}{\log n}$	$\frac{n}{(\log n)^2}$

- Close the gap with the upper bound O(n).
- Reduce the number of *inputs*.
- Consider games with more than two players.

Comparison

	JP	НМ	KV
Local Dim	n	n	n
#Outputs	n	n	n
#Inputs	n	$2^n, \frac{n}{2}$	$\frac{2^n}{n}$
Violation	$\frac{\sqrt{n}}{\log n}$	$\frac{\sqrt{n}}{\log n}$	$\frac{n}{(\log n)^2}$

- Close the gap with the upper bound O(n).
- Reduce the number of *inputs*.
- Consider games with more than two players.

Comparison

	JP	HM	KV
Local Dim	n	n	n
#Outputs	n	n	n
#Inputs	n	$2^n, \frac{n}{2}$	$\frac{2^n}{n}$
Violation	$\frac{\sqrt{n}}{\log n}$	$\frac{\sqrt{n}}{\log n}$	$\frac{n}{(\log n)^2}$

- Close the gap with the upper bound O(n).
- Reduce the number of *inputs*.
- Consider games with more than two players.

Comparison

	JP	HM	KV
Local Dim	n	n	n
#Outputs	n	n	n
#Inputs	n	$2^n, \frac{n}{2}$	$\frac{2^n}{n}$
Violation	$\frac{\sqrt{n}}{\log n}$	$\frac{\sqrt{n}}{\log n}$	$\frac{n}{(\log n)^2}$

- Close the gap with the upper bound O(n).
- Reduce the number of *inputs*.
- Consider games with more than two players.