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o The classical value w(G) is the maximum winning

probability over all classical strategies.
@ Quantum strategies: shared entangled state;
for each © measurement {A?}; for each y {B/'}.

o Entangled value w*(G).
e w! (@) using entangled state of local dimension < n.
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Study violation as a function of:

@ Local dimension of the entangled state.

@ Number of outputs.
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o [JPPVW'09]: Q(\/n/(logn)?).
o [JP '10]: Q(\/n/logn). (see next talk)
e Non-explicit; they use tools from operator space theory.

o [Regev '11] reproved this result with probabilistic tools.
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1
0
1
1

Perfect Matching (1, 2)
M )

¢ bits

~

ve {01}, (ij)eM

They win if v = 2; ® z;.

S

Thm: Classical winning probability is at most % +0 ( Cﬂ)
([BJK'04] proved this for ¢ = \/n).
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hell u,z u,z
1
@ We have that E[A(u)B(u ®2)] < Ay

(proof by hypercontractivity, next slide).
o Theorem follows by noting that n - 74— =
n

nn/(1=m) -
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= Eu[(Ty1=254) (u) - (T\ =27 B)(u)]

< [ Tyr=All, - T2l

1ToFlly < 11Fll14p2
hypercontractive inequality

< [|4lly-a, - 1Bll5-s,

= (B A" (&, [B)])

Eu[A(w)] = 1/n

_ 1
— pl/0-m) -
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The Khot-Vishnoi game

KV Bell Inequality violation

KV Bell Inequality violation

Setting n = % — 10;1
@ Entangled value (1 — 27)? ~ —(logln)z

@ Classical value is roughly m ~ 1

. o wr (KV n
@ Violation J((Kv)) = Q((logn)2)

@ Close to optimal, both in terms of local dimension

and number of outputs.
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o = n n
Violation e Togn —(log"n)2

Open problems
@ Close the gap with the upper bound O(n).

@ Reduce the number of inputs.
@ Consider games with more than two players.
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