Near-Optimal and Explicit Bell Inequality Violations

Harry Buhrman, Oded Regev, Giannicola Scarpa, Ronald de Wolf

January 2011

QIP 2011

Table of Contents

(1) Introduction
(2) The Hidden Matching game
(3) The Khot-Vishnoi game

4 Conclusions

Table of Contents

(1) Introduction

(2) The Hidden Matching game
(3) The Khot-Vishnoi game

4 Conclusions

Local realism?

Local realism?

- Classical physics:
- Locality: no faster than light influences.
- Realism: values are determined before measurement.
- [EPR'35]: Quantum physics seems to violate local realism. Is it wrong or incomplete?
- [Bell'64]: Every local realistic theory must satisfy certain constraints (Bell Inequality).
- Experiments suggest that nature violates Bell Inequalities!

We study quantitatively how large the deviation from classical predictions can be.

Local realism?

- Classical physics:
- Locality: no faster than light influences.
- Realism: values are determined before measurement.
- [EPR'35]: Quantum physics seems to violate local realism. Is it wrong or incomplete?
- [Bell'64]: Every local realistic theory must satisfy certain constraints (Bell Inequality).
- Experiments suggest that nature violates Bell Inequalities!

We study quantitatively how large the deviation from classical predictions can be.

Local realism?

- Classical physics:
- Locality: no faster than light influences.
- Realism: values are determined before measurement.
- [EPR'35]: Quantum physics seems to violate local realism. Is it wrong or incomplete?
- [Bell'64]: Every local realistic theory must satisfy certain constraints (Bell Inequality).
- Experiments suggest that nature violates Bell Inequalities!

We study quantitatively how large the deviation from classical predictions can be.

Local realism?

- Classical physics:
- Locality: no faster than light influences.
- Realism: values are determined before measurement.
- [EPR'35]: Quantum physics seems to violate local realism. Is it wrong or incomplete?
- [Bell'64]: Every local realistic theory must satisfy certain constraints (Bell Inequality).
- Experiments suggest that nature violates Bell Inequalities!

We study quantitatively how large the deviation from classical predictions can be.

Local realism?

- Classical physics:
- Locality: no faster than light influences.
- Realism: values are determined before measurement.
- [EPR'35]: Quantum physics seems to violate local realism. Is it wrong or incomplete?
- [Bell'64]: Every local realistic theory must satisfy certain constraints (Bell Inequality).
- Experiments suggest that nature violates Bell Inequalities!

We study quantitatively how large the deviation from classical predictions can be.

Local realism?

- Classical physics:
- Locality: no faster than light influences.
- Realism: values are determined before measurement.
- [EPR'35]: Quantum physics seems to violate local realism. Is it wrong or incomplete?
- [Bell'64]: Every local realistic theory must satisfy certain constraints (Bell Inequality).
- Experiments suggest that nature violates Bell Inequalities!

We study quantitatively how large the deviation from classical predictions can be.

Local realism?

- Classical physics:
- Locality: no faster than light influences.
- Realism: values are determined before measurement.
- [EPR'35]: Quantum physics seems to violate local realism. Is it wrong or incomplete?
- [Bell'64]: Every local realistic theory must satisfy certain constraints (Bell Inequality).
- Experiments suggest that nature violates Bell Inequalities!

We study quantitatively how large the deviation from classical predictions can be.

Non-local games

Space-like separated

- Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.
Alice outputs a and Bob outputs b.
- A predicate specifies winning outputs.
- Goal: maximize winning probability.
- Classical strategies: functions $A(x), B(y)$.
- Quantum strategies: shared entangled state; for each x measurement $\left\{A_{a}^{x}\right\}$; for each $y\left\{B_{b}^{y}\right\}$.

Non-local games

Space-like separated

- Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.
Alice outputs a and Bob outputs b.
- A predicate specifies winning outputs.
- Goal: maximize winning probability.
- Classical strategies: functions $A(x), B(y)$.
- Quantum strategies: shared entangled state; for each x measurement $\left\{A_{a}^{x}\right\}$; for each $y\left\{B_{b}^{y}\right\}$

Non-local games

- Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.
Alice outputs a and Bob outputs b.
- A predicate specifies winning outputs.
- Goal: maximize winning probability.
- Classical strategies: functions $A(x), B(y)$.
- Quantum strategies: shared entangled state; for each x measurement $\left\{A_{a}^{x}\right\}$; for each $y\left\{B_{b}^{y}\right\}$.

Non-local games

- Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.
Alice outputs a and Bob outputs b.
- A predicate specifies winning outputs.
- Goal: maximize winning probability.
- Classical strategies: functions $A(x), B(y)$.
- The classical value $\omega(G)$ is the maximum winning probability over all classical strategies.
- Quantum strategies: shared entangled state; for each x measurement $\left\{A_{a}^{x}\right\}$; for each $y\left\{B_{b}^{y}\right\}$.

Non-local games

- Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.
Alice outputs a and Bob outputs b.
- A predicate specifies winning outputs.
- Goal: maximize winning probability.
- Classical strategies: functions $A(x), B(y)$.
- The classical value $\omega(G)$ is the maximum winning probability over all classical strategies.
- Quantum strategies: shared entangled state; for each x measurement $\left\{A_{a}^{x}\right\}$; for each $y\left\{B_{b}^{y}\right\}$.

Non-local games

- Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.
Alice outputs a and Bob outputs b.
- A predicate specifies winning outputs.
- Goal: maximize winning probability.
- Classical strategies: functions $A(x), B(y)$.
- The classical value $\omega(G)$ is the maximum winning probability over all classical strategies.
- Quantum strategies: shared entangled state; for each x measurement $\left\{A_{a}^{x}\right\}$; for each $y\left\{B_{b}^{y}\right\}$.
- Entangled value $\omega^{*}(G)$.
- $\omega_{n}^{*}(G)$ using entangled state of local dimension $\leq n$.

Non-local games

- Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.
Alice outputs a and Bob outputs b.
- A predicate specifies winning outputs.
- Goal: maximize winning probability.
- Classical strategies: functions $A(x), B(y)$.
- The classical value $\omega(G)$ is the maximum winning probability over all classical strategies.
- Quantum strategies: shared entangled state; for each x measurement $\left\{A_{a}^{x}\right\}$; for each $y\left\{B_{b}^{y}\right\}$.
- Entangled value $\omega^{*}(G)$.
- $\omega_{n}^{*}(G)$ using entangled state of local dimension $\leq n$.

Non-local games

- Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.
Alice outputs a and Bob outputs b.
- A predicate specifies winning outputs.
- Goal: maximize winning probability.
- Classical strategies: functions $A(x), B(y)$.
- The classical value $\omega(G)$ is the maximum winning probability over all classical strategies.
- Quantum strategies: shared entangled state; for each x measurement $\left\{A_{a}^{x}\right\}$; for each $y\left\{B_{b}^{y}\right\}$.
- Entangled value $\omega^{*}(G)$.
- $\omega_{n}^{*}(G)$ using entangled state of local dimension $\leq n$.

Bell Inequality Violation

- A Bell Inequality is an upper bound on $\omega(G)$.
- Violation: $\omega^{*}(G)$ larger than $\omega(G)$.
- CHSH [Clauser, Horne, Shimony, Holt, 1969] Classic example where $\frac{\omega_{2}^{*}(\mathrm{CHSH})}{\omega(\mathrm{CHSH})} \sim \frac{0.85}{0.75}$
- We want large violations!

Study violation as a function of:

- Local dimension of the entangled state.
- Number of outputs.

Bell Inequality Violation

- A Bell Inequality is an upper bound on $\omega(G)$.
- Violation: $\omega^{*}(G)$ larger than $\omega(G)$.
- Quantified by ratio $\frac{\omega^{*}(G)}{\omega(G)}$.
- CHSH [Clauser, Horne, Shimony, Holt, 1969]

Classic example where $\frac{\omega_{2}^{*}(\mathrm{CHSH})}{\omega(\mathrm{CHSH})} \sim \frac{0.85}{0.75}$

- We want large violations!

Study violation as a function of:

- Local dimension of the entangled state.
- Number of outputs.

Bell Inequality Violation

- A Bell Inequality is an upper bound on $\omega(G)$.
- Violation: $\omega^{*}(G)$ larger than $\omega(G)$.
- Quantified by ratio $\frac{\omega^{*}(G)}{\omega(G)}$.
- CHSH [Clauser, Horne, Shimony, Holt, 1969]

- We want large violations!

Study violation as a function of:

- Local dimension of the entangled state.
- Number of outputs.

Bell Inequality Violation

- A Bell Inequality is an upper bound on $\omega(G)$.
- Violation: $\omega^{*}(G)$ larger than $\omega(G)$.
- Quantified by ratio $\frac{\omega^{*}(G)}{\omega(G)}$.
- CHSH [Clauser, Horne, Shimony, Holt, 1969]

Classic example where $\frac{\omega_{2}^{*}(\mathrm{CHSH})}{\omega(\mathrm{CHSH})} \sim \frac{0.85}{0.75}$

- We want large violations!

Study violation as a function of:
 - Local dimension of the entangled state.
 - Number of outputs.

Bell Inequality Violation

- A Bell Inequality is an upper bound on $\omega(G)$.
- Violation: $\omega^{*}(G)$ larger than $\omega(G)$.
- Quantified by ratio $\frac{\omega^{*}(G)}{\omega(G)}$.
- CHSH [Clauser, Horne, Shimony, Holt, 1969]

Classic example where $\frac{\omega_{2}^{*}(\mathrm{CHSH})}{\omega(\mathrm{CHSH})} \sim \frac{0.85}{0.75}$

- We want large violations!
- Strong separation between quantum and classical worlds.
- Typically easier to verify experimentally.

Study violation as a function of:

- Local dimension of the entangled state.
- Number of outputs.

Bell Inequality Violation

- A Bell Inequality is an upper bound on $\omega(G)$.
- Violation: $\omega^{*}(G)$ larger than $\omega(G)$.
- Quantified by ratio $\frac{\omega^{*}(G)}{\omega(G)}$.
- CHSH [Clauser, Horne, Shimony, Holt, 1969]

Classic example where $\frac{\omega_{2}^{*}(\mathrm{CHSH})}{\omega(\mathrm{CHSH})} \sim \frac{0.85}{0.75}$

- We want large violations!
- Strong separation between quantum and classical worlds.
- Typically easier to verify experimentally.

Study violation as a function of:

- Local dimension of the entangled state.
- Number of outputs.

Bell Inequality Violation

- A Bell Inequality is an upper bound on $\omega(G)$.
- Violation: $\omega^{*}(G)$ larger than $\omega(G)$.
- Quantified by ratio $\frac{\omega^{*}(G)}{\omega(G)}$.
- CHSH [Clauser, Horne, Shimony, Holt, 1969]

Classic example where $\frac{\omega_{2}^{*}(\mathrm{CHSH})}{\omega(\mathrm{CHSH})} \sim \frac{0.85}{0.75}$

- We want large violations!
- Strong separation between quantum and classical worlds.
- Typically easier to verify experimentally.

Study violation as a function of:

- Local dimension of the entangled state.
- Number of outputs.

Bell Inequality Violation

- A Bell Inequality is an upper bound on $\omega(G)$.
- Violation: $\omega^{*}(G)$ larger than $\omega(G)$.
- Quantified by ratio $\frac{\omega^{*}(G)}{\omega(G)}$.
- CHSH [Clauser, Horne, Shimony, Holt, 1969]

Classic example where $\frac{\omega_{2}^{*}(\mathrm{CHSH})}{\omega(\mathrm{CHSH})} \sim \frac{0.85}{0.75}$

- We want large violations!
- Strong separation between quantum and classical worlds.
- Typically easier to verify experimentally.

Study violation as a function of:

- Local dimension of the entangled state.
- Number of outputs.

What is known?

How large can the ratio $\frac{\omega_{n}^{*}(G)}{\omega(G)}$ be?
Upper Bounds:

Lower Bounds:

What is known?

How large can the ratio $\frac{\omega_{n}^{*}(G)}{\omega(G)}$ be?
Upper Bounds:

Lower Bounds:

What is known?

How large can the ratio $\frac{\omega_{n}^{*}(G)}{\omega(G)}$ be?
Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos '10]: with k possible outputs: $O(k)$. Lower Bounds:

What is known?

How large can the ratio $\frac{\omega_{n}^{*}(G)}{\omega(G)}$ be?
Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos '10]: with k possible outputs: $O(k)$. Lower Bounds:

What is known?

How large can the ratio $\frac{\omega_{n}^{*}(G)}{\omega(G)}$ be?
Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos '10]: with k possible outputs: $O(k)$. Lower Bounds:

What is known?

How large can the ratio $\frac{\omega_{n}^{*}(G)}{\omega(G)}$ be?
Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos '10]: with k possible outputs: $O(k)$.

Lower Bounds:

What is known?

How large can the ratio $\frac{\omega_{n}^{*}(G)}{\omega(G)}$ be?
Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos '10]: with k possible outputs: $O(k)$.

Lower Bounds:

- [Folklore]: n^{ε} by parallel repetition of "magic square".
- [Kempe, Regev, Toner '08]: $n^{\varepsilon^{\prime}}$ from Unique Games.
- [JPPVW'09]: $\Omega\left(\sqrt{n} /(\log n)^{2}\right)$.
- [JP '10]: $\Omega(\sqrt{n} / \log n)$. (see next talk)

What is known?

How large can the ratio $\frac{\omega_{n}^{*}(G)}{\omega(G)}$ be?
Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos '10]: with k possible outputs: $O(k)$.

Lower Bounds:

- [Folklore]: n^{ε} by parallel repetition of "magic square".
- [Kempe, Regev, Toner '08]: $n^{\varepsilon^{\prime}}$ from Unique Games.
- [JPPVW'09]: $\Omega\left(\sqrt{n} /(\log n)^{2}\right)$.
- [JP '10]: $\Omega(\sqrt{n} / \log n)$. (see next talk)

What is known?

How large can the ratio $\frac{\omega_{n}^{*}(G)}{\omega(G)}$ be?
Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos '10]: with k possible outputs: $O(k)$.

Lower Bounds:

- [Folklore]: n^{ε} by parallel repetition of "magic square".
- [Kempe, Regev, Toner '08]: $n^{\varepsilon^{\prime}}$ from Unique Games.
- [JPPVW'09]: $\Omega\left(\sqrt{n} /(\log n)^{2}\right)$.
- [JP '10]: $\Omega(\sqrt{n} / \log n)$. (see next talk)

What is known?

How large can the ratio $\frac{\omega_{n}^{*}(G)}{\omega(G)}$ be?
Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos '10]: with k possible outputs: $O(k)$.

Lower Bounds:

- [Folklore]: n^{ε} by parallel repetition of "magic square".
- [Kempe, Regev, Toner '08]: $n^{\varepsilon^{\prime}}$ from Unique Games.
- [JPPVW'09]: $\Omega\left(\sqrt{n} /(\log n)^{2}\right)$.
- [JP '10]: $\Omega(\sqrt{n} / \log n)$. (see next talk)
- Non-explicit; they use tools from operator space theory.
- [Regev '11] reproved this result with probabilistic tools.

What is known?

How large can the ratio $\frac{\omega_{n}^{*}(G)}{\omega(G)}$ be?

Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos '10]: with k possible outputs: $O(k)$.

Lower Bounds:

- [Folklore]: n^{ε} by parallel repetition of "magic square".
- [Kempe, Regev, Toner '08]: $n^{\varepsilon^{\prime}}$ from Unique Games.
- [JPPVW'09]: $\Omega\left(\sqrt{n} /(\log n)^{2}\right)$.
- [JP '10]: $\Omega(\sqrt{n} / \log n)$. (see next talk)
- Non-explicit; they use tools from operator space theory.
- [Regev '11] reproved this result with probabilistic tools.

What is known?

How large can the ratio $\frac{\omega_{n}^{*}(G)}{\omega(G)}$ be?

Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos '10]: with k possible outputs: $O(k)$.

Lower Bounds:

- [Folklore]: n^{ε} by parallel repetition of "magic square".
- [Kempe, Regev, Toner '08]: $n^{\varepsilon^{\prime}}$ from Unique Games.
- [JPPVW'09]: $\Omega\left(\sqrt{n} /(\log n)^{2}\right)$.
- [JP '10]: $\Omega(\sqrt{n} / \log n)$. (see next talk)
- Non-explicit; they use tools from operator space theory.
- [Regev '11] reproved this result with probabilistic tools.

Our results

Hidden Matching game

- Variant of "Hidden Matching" from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC'04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n} / \log n$.

Khot-Vishnoi game

Our results

Hidden Matching game

- Variant of "Hidden Matching" from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC'04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n} / \log n$.

Khot-Vishnoi game

Our results

Hidden Matching game

- Variant of "Hidden Matching" from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC'04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n} / \log n$.

Khot-Vishnoi game

Our results

Hidden Matching game

- Variant of "Hidden Matching" from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC'04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n} / \log n$.

Khot-Vishnoi game

Our results

Hidden Matching game

- Variant of "Hidden Matching" from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC'04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n} / \log n$.

Khot-Vishnoi game

- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS'05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS'08]
- n outputs; entanglement dimension n.
- Violation of order $n /(\log n)^{2}$

Our results

Hidden Matching game

- Variant of "Hidden Matching" from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC'04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n} / \log n$.

Khot-Vishnoi game

- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS'05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS'08]
- n outputs; entanglement dimension n.
- Violation of order $n /(\log n)^{2}$.

Our results

Hidden Matching game

- Variant of "Hidden Matching" from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC'04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n} / \log n$.

Khot-Vishnoi game

- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS'05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS'08]
- n outputs; entanglement dimension n.
- Violation of order $n /(\log n)^{2}$.

Our results

Hidden Matching game

- Variant of "Hidden Matching" from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC'04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n} / \log n$.

Khot-Vishnoi game

- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS'05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS'08]
- n outputs; entanglement dimension n.
- Violation of order $n /(\log n)^{2}$.

Table of Contents

(2) The Hidden Matching game
(3) The Khot-Vishnoi game

4 Conclusions

What are the inputs?

x
1
\square 1 1

What are the inputs?

Hidden Matching communication game

Hidden Matching communication game

Hidden Matching communication game

Hidden Matching communication game

Hidden Matching communication game

They win if $v=x_{i} \oplus x_{j}$.

Hidden Matching communication game

They win if $v=x_{i} \oplus x_{j}$.
Thm: Classical winning probability is at most $\frac{1}{2}+O\left(\frac{c}{\sqrt{n}}\right)$ ([BJK'04] proved this for $c=\sqrt{n}$).

Hidden Matching non-local game

Hidden Matching non-local game

They win if $(a \cdot(i \oplus j)) \oplus d=x_{i} \oplus x_{j}$.

Hidden Matching non-local game

They win if $(a \cdot(i \oplus j)) \oplus d=x_{i} \oplus x_{j}$.
Winning probability 1 with n-dimensional entanglement.

Hidden Matching non-local game

They win if $(a \cdot(i \oplus j)) \oplus d=x_{i} \oplus x_{j}$.
Winning probability 1 with n-dimensional entanglement.
Classical bound $\frac{1}{2}+O\left(\frac{\log n}{\sqrt{n}}\right)$.

Hidden Matching non-local game

They win if $(a \cdot(i \oplus j)) \oplus d=x_{i} \oplus x_{j}$.
Winning probability 1 with n-dimensional entanglement.
Classical bound $\frac{1}{2}+O\left(\frac{\log n}{\sqrt{n}}\right)$. Violation: $\Omega\left(\frac{\sqrt{n}}{\log n}\right)$.

Table of Contents

(1) Introduction
(2) The Hidden Matching game
(3) The Khot-Vishnoi game

4 Conclusions

Khot-Vishnoi game

$$
G\left(\{0,1\}^{n}, \oplus\right)
$$

Khot-Vishnoi game

$$
G\left(\{0,1\}^{n}, \oplus\right)
$$

Subgroup of all n Hadamard codewords

Khot-Vishnoi game

Winning condition: $a \oplus b=z$.

Khot-Vishnoi game

Winning condition: $a \oplus b=z$.

Khot-Vishnoi - Quantum strategy

For any n and $\eta \in[0,1 / 2]$, there exists a quantum strategy that wins with probability at least $(1-2 \eta)^{2}$.

Khot-Vishnoi - Quantum strategy

For any n and $\eta \in[0,1 / 2]$, there exists a quantum strategy that wins with probability at least $(1-2 \eta)^{2}$.

- For $a \in\{0,1\}^{n}$, define $\left|v^{a}\right\rangle=\left((-1)^{a_{i}} / \sqrt{n}\right)_{i \in[n]}$.
- For all $a, b,\left\langle v^{a}, v^{b}\right\rangle=1-2 d(a, b) / n$
- The vectors $\left\{v^{a} \mid a \in x\right\}$ are an orthonormal basis of \mathbb{R}^{n}.
- Quantum strategy (for Alice, similar for Bob):

Khot-Vishnoi - Quantum strategy

For any n and $\eta \in[0,1 / 2]$, there exists a quantum strategy that wins with probability at least $(1-2 \eta)^{2}$.

- For $a \in\{0,1\}^{n}$, define $\left|v^{a}\right\rangle=\left((-1)^{a_{i}} / \sqrt{n}\right)_{i \in[n]}$.
- For all $a, b,\left\langle v^{a}, v^{b}\right\rangle=1-2 d(a, b) / n$
- The vectors $\left\{v^{a} \mid a \in x\right\}$ are an orthonormal basis of \mathbb{R}^{n}.
- Quantum strategy (for Alice, similar for Bob):

Khot-Vishnoi - Quantum strategy

For any n and $\eta \in[0,1 / 2]$, there exists a quantum strategy that wins with probability at least $(1-2 \eta)^{2}$.

- For $a \in\{0,1\}^{n}$, define $\left|v^{a}\right\rangle=\left((-1)^{a_{i}} / \sqrt{n}\right)_{i \in[n]}$.
- For all $a, b,\left\langle v^{a}, v^{b}\right\rangle=1-2 d(a, b) / n$
- The vectors $\left\{v^{a} \mid a \in x\right\}$ are an orthonormal basis of \mathbb{R}^{n}.
- Quantum strategy (for Alice, similar for Bob):

Khot-Vishnoi - Quantum strategy

For any n and $\eta \in[0,1 / 2]$, there exists a quantum strategy that wins with probability at least $(1-2 \eta)^{2}$.

- For $a \in\{0,1\}^{n}$, define $\left|v^{a}\right\rangle=\left((-1)^{a_{i}} / \sqrt{n}\right)_{i \in[n]}$.
- For all $a, b,\left\langle v^{a}, v^{b}\right\rangle=1-2 d(a, b) / n$
- The vectors $\left\{v^{a} \mid a \in x\right\}$ are an orthonormal basis of \mathbb{R}^{n}.
- Quantum strategy (for Alice, similar for Bob):
- Shared maximally entangled state, local dimension n.
- On input x, projective measurement $\left\{v^{a} \mid a \in x\right\}$
- Output the measurement outcome a.

Khot-Vishnoi - Quantum strategy

For any n and $\eta \in[0,1 / 2]$, there exists a quantum strategy that wins with probability at least $(1-2 \eta)^{2}$.

- For $a \in\{0,1\}^{n}$, define $\left|v^{a}\right\rangle=\left((-1)^{a_{i}} / \sqrt{n}\right)_{i \in[n]}$.
- For all $a, b,\left\langle v^{a}, v^{b}\right\rangle=1-2 d(a, b) / n$
- The vectors $\left\{v^{a} \mid a \in x\right\}$ are an orthonormal basis of \mathbb{R}^{n}.
- Quantum strategy (for Alice, similar for Bob):
- Shared maximally entangled state, local dimension n.
- On input x, projective measurement $\left\{v^{a} \mid a \in x\right\}$.
- Output the measurement outcome a.

Khot-Vishnoi - Quantum strategy

For any n and $\eta \in[0,1 / 2]$, there exists a quantum strategy that wins with probability at least $(1-2 \eta)^{2}$.

- For $a \in\{0,1\}^{n}$, define $\left|v^{a}\right\rangle=\left((-1)^{a_{i}} / \sqrt{n}\right)_{i \in[n]}$.
- For all $a, b,\left\langle v^{a}, v^{b}\right\rangle=1-2 d(a, b) / n$
- The vectors $\left\{v^{a} \mid a \in x\right\}$ are an orthonormal basis of \mathbb{R}^{n}.
- Quantum strategy (for Alice, similar for Bob):
- Shared maximally entangled state, local dimension n.
- On input x, projective measurement $\left\{v^{a} \mid a \in x\right\}$.
- Output the measurement outcome a.

Khot-Vishnoi - Quantum strategy

For any n and $\eta \in[0,1 / 2]$, there exists a quantum strategy that wins with probability at least $(1-2 \eta)^{2}$.

- For $a \in\{0,1\}^{n}$, define $\left|v^{a}\right\rangle=\left((-1)^{a_{i}} / \sqrt{n}\right)_{i \in[n]}$.
- For all $a, b,\left\langle v^{a}, v^{b}\right\rangle=1-2 d(a, b) / n$
- The vectors $\left\{v^{a} \mid a \in x\right\}$ are an orthonormal basis of \mathbb{R}^{n}.
- Quantum strategy (for Alice, similar for Bob):
- Shared maximally entangled state, local dimension n.
- On input x, projective measurement $\left\{v^{a} \mid a \in x\right\}$.
- Output the measurement outcome a.

Khot-Vishnoi - Quantum strategy (2)

Winning probability is at least $(1-2 \eta)^{2}$.

Khot-Vishnoi - Quantum strategy (2)

Winning probability is at least $(1-2 \eta)^{2}$.

Khot-Vishnoi - Quantum strategy (2)

Winning probability is at least $(1-2 \eta)^{2}$.

- Probability to obtain a, b is $\frac{\left\langle v^{a}, v^{b}\right\rangle^{2}}{n}$.
- Because of the maximally entangled state.
- For inputs x, y, winning probability is

Khot-Vishnoi - Quantum strategy (2)

Winning probability is at least $(1-2 \eta)^{2}$.

- Probability to obtain a, b is $\frac{\left\langle v^{a}, v^{b}\right\rangle^{2}}{n}$.
- Because of the maximally entangled state.
- For inputs x, y, winning probability is

Khot-Vishnoi - Quantum strategy (2)

Winning probability is at least $(1-2 \eta)^{2}$.

- Probability to obtain a, b is $\frac{\left\langle v^{a}, v^{b}\right\rangle^{2}}{n}$.
- Because of the maximally entangled state.
- For inputs x, y, winning probability is

$$
\frac{1}{n} \sum_{a \in x}\left\langle v^{a}, v^{a \oplus z}\right\rangle^{2}=\frac{1}{n} \sum_{a \in x}\left(1-\frac{2 d(a, a \oplus z)}{n}\right)^{2}=\left(1-\frac{2|z|}{n}\right)^{2}
$$

Khot-Vishnoi - Quantum strategy (2)

Winning probability is at least $(1-2 \eta)^{2}$.

- Probability to obtain a, b is $\frac{\left\langle v^{a}, v^{b}\right\rangle^{2}}{n}$.
- Because of the maximally entangled state.
- For inputs x, y, winning probability is

$$
\frac{1}{n} \sum_{a \in x}\left\langle v^{a}, v^{a \oplus z}\right\rangle^{2}=\frac{1}{n} \sum_{a \in x}\left(1-\frac{2 d(a, a \oplus z)}{n}\right)^{2}=\left(1-\frac{2|z|}{n}\right)^{2}
$$

Khot-Vishnoi - Quantum strategy (2)

Winning probability is at least $(1-2 \eta)^{2}$.

- Probability to obtain a, b is $\frac{\left\langle v^{a}, v^{b}\right\rangle^{2}}{n}$.
- Because of the maximally entangled state.
- For inputs x, y, winning probability is

$$
\frac{1}{n} \sum_{a \in x}\left\langle v^{a}, v^{a \oplus z}\right\rangle^{2}=\frac{1}{n} \sum_{a \in x}\left(1-\frac{2 d(a, a \oplus z)}{n}\right)^{2}=\left(1-\frac{2|z|}{n}\right)^{2}
$$

Khot-Vishnoi - Quantum strategy (2)

Winning probability is at least $(1-2 \eta)^{2}$.

- Probability to obtain a, b is $\frac{\left\langle v^{a}, v^{b}\right\rangle^{2}}{n}$.
- Because of the maximally entangled state.
- For inputs x, y, winning probability is

$$
\frac{1}{n} \sum_{a \in x}\left\langle v^{a}, v^{a \oplus z}\right\rangle^{2}=\frac{1}{n} \sum_{a \in x}\left(1-\frac{2 d(a, a \oplus z)}{n}\right)^{2}=\left(1-\frac{2|z|}{n}\right)^{2}
$$

Khot-Vishnoi - Quantum strategy (2)

Winning probability is at least $(1-2 \eta)^{2}$.

- Probability to obtain a, b is $\frac{\left\langle v^{a}, v^{b}\right\rangle^{2}}{n}$.
- Because of the maximally entangled state.
- For inputs x, y, winning probability is

$$
\frac{1}{n} \sum_{a \in x}\left\langle v^{a}, v^{a \oplus z}\right\rangle^{2}=\frac{1}{n} \sum_{a \in x}\left(1-\frac{2 d(a, a \oplus z)}{n}\right)^{2}=\left(1-\frac{2|z|}{n}\right)^{2}
$$

- The overall winning probability is

$$
\mathbb{E}_{z}\left[\left(1-\frac{2|z|}{n}\right)^{2}\right] \geq\left(\mathbb{E}_{z}\left[1-\frac{2|z|}{n}\right]\right)^{2}=(1-2 \eta)^{2}
$$

Khot-Vishnoi - Quantum strategy (2)

Winning probability is at least $(1-2 \eta)^{2}$.

- Probability to obtain a, b is $\frac{\left\langle v^{a}, v^{b}\right\rangle^{2}}{n}$.
- Because of the maximally entangled state.
- For inputs x, y, winning probability is

$$
\frac{1}{n} \sum_{a \in x}\left\langle v^{a}, v^{a \oplus z}\right\rangle^{2}=\frac{1}{n} \sum_{a \in x}\left(1-\frac{2 d(a, a \oplus z)}{n}\right)^{2}=\left(1-\frac{2|z|}{n}\right)^{2}
$$

- The overall winning probability is

$$
\mathbb{E}_{z}\left[\left(1-\frac{2|z|}{n}\right)^{2}\right] \geq\left(\mathbb{E}_{z}\left[1-\frac{2|z|}{n}\right]\right)^{2}=(1-2 \eta)^{2}
$$

Khot-Vishnoi - Quantum strategy (2)

Winning probability is at least $(1-2 \eta)^{2}$.

- Probability to obtain a, b is $\frac{\left\langle v^{a}, v^{b}\right\rangle^{2}}{n}$.
- Because of the maximally entangled state.
- For inputs x, y, winning probability is

$$
\frac{1}{n} \sum_{a \in x}\left\langle v^{a}, v^{a \oplus z}\right\rangle^{2}=\frac{1}{n} \sum_{a \in x}\left(1-\frac{2 d(a, a \oplus z)}{n}\right)^{2}=\left(1-\frac{2|z|}{n}\right)^{2}
$$

- The overall winning probability is

$$
\mathbb{E}_{z}\left[\left(1-\frac{2|z|}{n}\right)^{2}\right] \geq\left(\mathbb{E}_{z}\left[1-\frac{2|z|}{n}\right]\right)^{2}=(1-2 \eta)^{2}
$$

Khot-Vishnoi - Quantum strategy (2)

Winning probability is at least $(1-2 \eta)^{2}$.

- Probability to obtain a, b is $\frac{\left\langle v^{a}, v^{b}\right\rangle^{2}}{n}$.
- Because of the maximally entangled state.
- For inputs x, y, winning probability is

$$
\frac{1}{n} \sum_{a \in x}\left\langle v^{a}, v^{a \oplus z}\right\rangle^{2}=\frac{1}{n} \sum_{a \in x}\left(1-\frac{2 d(a, a \oplus z)}{n}\right)^{2}=\left(1-\frac{2|z|}{n}\right)^{2}
$$

- The overall winning probability is

$$
\mathbb{E}_{z}\left[\left(1-\frac{2|z|}{n}\right)^{2}\right] \geq\left(\mathbb{E}_{z}\left[1-\frac{2|z|}{n}\right]\right)^{2}=(1-2 \eta)^{2}
$$

Khot-Vishnoi - Classical bound

Every classical strategy has winning probability $\leq 1 / n^{\eta /(1-\eta)}$

Khot-Vishnoi - Classical bound

Every classical strategy has winning probability $\leq 1 / n^{\eta /(1-\eta)}$

- Fix strategy. Functions $A, B:\{0,1\}^{n} \rightarrow\{0,1\}$.

Khot-Vishnoi - Classical bound

Every classical strategy has winning probability $\leq 1 / n^{\eta /(1-\eta)}$

- Fix strategy. Functions $A, B:\{0,1\}^{n} \rightarrow\{0,1\}$.

Khot-Vishnoi - Classical bound

Every classical strategy has winning probability $\leq 1 / n^{\eta /(1-\eta)}$

- Fix strategy. Functions $A, B:\{0,1\}^{n} \rightarrow\{0,1\}$.
- $A(u)=1 \Leftrightarrow$ Alice's output on coset $u \oplus H$ is u.
- $\mathbb{E}_{u}[A(u)]=1 / n$ (Alice chooses one element per coset)
- Players win $\Leftrightarrow \sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)=1$.
- Winning probability is $\underset{u, z}{\mathbb{E}}\left[\sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)\right]$

Khot-Vishnoi - Classical bound

Every classical strategy has winning probability $\leq 1 / n^{\eta /(1-\eta)}$

- Fix strategy. Functions $A, B:\{0,1\}^{n} \rightarrow\{0,1\}$.
- $A(u)=1 \Leftrightarrow$ Alice's output on coset $u \oplus H$ is u.
- $\mathbb{E}_{u}[A(u)]=1 / n$ (Alice chooses one element per coset)
- Players win $\Leftrightarrow \sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)=1$.
- Winning probability is $\underset{u, z}{\mathbb{E}}\left[\sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)\right]$

Khot-Vishnoi - Classical bound

Every classical strategy has winning probability $\leq 1 / n^{\eta /(1-\eta)}$

- Fix strategy. Functions $A, B:\{0,1\}^{n} \rightarrow\{0,1\}$.
- $A(u)=1 \Leftrightarrow$ Alice's output on coset $u \oplus H$ is u.
- $\mathbb{E}_{u}[A(u)]=1 / n$ (Alice chooses one element per coset)
- Players win $\Leftrightarrow \sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)=1$.
- Winning probability is $\underset{u, z}{\mathbb{E}}\left[\sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)\right]$

Khot-Vishnoi - Classical bound

Every classical strategy has winning probability $\leq 1 / n^{\eta /(1-\eta)}$

- Fix strategy. Functions $A, B:\{0,1\}^{n} \rightarrow\{0,1\}$.
- $A(u)=1 \Leftrightarrow$ Alice's output on coset $u \oplus H$ is u.
- $\mathbb{E}_{u}[A(u)]=1 / n$ (Alice chooses one element per coset)
- Players win $\Leftrightarrow \sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)=1$.
- Winning probability is $\underset{u, z}{\mathbb{E}}\left[\sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)\right]$

Khot-Vishnoi - Classical bound

Every classical strategy has winning probability $\leq 1 / n^{\eta /(1-\eta)}$

- Fix strategy. Functions $A, B:\{0,1\}^{n} \rightarrow\{0,1\}$.
- $A(u)=1 \Leftrightarrow$ Alice's output on coset $u \oplus H$ is u.
- $\mathbb{E}_{u}[A(u)]=1 / n$ (Alice chooses one element per coset)
- Players win $\Leftrightarrow \sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)=1$.
- Winning probability is $\underset{u, z}{\mathbb{E}}\left[\sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)\right]$

Khot-Vishnoi - Classical bound

Every classical strategy has winning probability $\leq 1 / n^{\eta /(1-\eta)}$

- Fix strategy. Functions $A, B:\{0,1\}^{n} \rightarrow\{0,1\}$.
- $A(u)=1 \Leftrightarrow$ Alice's output on coset $u \oplus H$ is u.
- $\mathbb{E}_{u}[A(u)]=1 / n$ (Alice chooses one element per coset)
- Players win $\Leftrightarrow \sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)=1$.
- Winning probability is $\underset{u, z}{\mathbb{E}}\left[\sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)\right]$

$$
=\sum_{h \in H} \underset{u, z}{\mathbb{E}}[A(u \oplus h) B(u \oplus z \oplus h)]=n \underset{u, z}{\mathbb{E}}[A(u) B(u \oplus z)]
$$

Khot-Vishnoi - Classical bound

Every classical strategy has winning probability $\leq 1 / n^{\eta /(1-\eta)}$

- Fix strategy. Functions $A, B:\{0,1\}^{n} \rightarrow\{0,1\}$.
- $A(u)=1 \Leftrightarrow$ Alice's output on coset $u \oplus H$ is u.
- $\mathbb{E}_{u}[A(u)]=1 / n$ (Alice chooses one element per coset)
- Players win $\Leftrightarrow \sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)=1$.
- Winning probability is $\underset{u, z}{\mathbb{E}}\left[\sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)\right]$

$$
=\sum_{h \in H} \underset{u, z}{\mathbb{E}}[A(u \oplus h) B(u \oplus z \oplus h)]=n \underset{u, z}{\mathbb{E}}[A(u) B(u \oplus z)]
$$

Khot-Vishnoi - Classical bound

Every classical strategy has winning probability $\leq 1 / n^{\eta /(1-\eta)}$

- Fix strategy. Functions $A, B:\{0,1\}^{n} \rightarrow\{0,1\}$.
- $A(u)=1 \Leftrightarrow$ Alice's output on coset $u \oplus H$ is u.
- $\mathbb{E}_{u}[A(u)]=1 / n$ (Alice chooses one element per coset)
- Players win $\Leftrightarrow \sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)=1$.
- Winning probability is $\underset{u, z}{\mathbb{E}}\left[\sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)\right]$
$=\sum_{h \in H} \underset{u, z}{\mathbb{E}}[A(u \oplus h) B(u \oplus z \oplus h)]=n \underset{u, z}{\mathbb{E}}[A(u) B(u \oplus z)]$
- We have that $\underset{u, z}{\mathbb{E}}[A(u) B(u \oplus z)] \leq \frac{1}{n^{1 /(1-\eta)}}$
(proof by hypercontractivity, next slide).
- Theorem follows by noting that $n \cdot \frac{1}{n^{1 /(1-\eta)}}=\frac{1}{n^{n /(1-\eta)}}$

Khot-Vishnoi - Classical bound

Every classical strategy has winning probability $\leq 1 / n^{\eta /(1-\eta)}$

- Fix strategy. Functions $A, B:\{0,1\}^{n} \rightarrow\{0,1\}$.
- $A(u)=1 \Leftrightarrow$ Alice's output on coset $u \oplus H$ is u.
- $\mathbb{E}_{u}[A(u)]=1 / n$ (Alice chooses one element per coset)
- Players win $\Leftrightarrow \sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)=1$.
- Winning probability is $\underset{u, z}{\mathbb{E}}\left[\sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h)\right]$

$$
=\sum_{h \in H} \underset{u, z}{\mathbb{E}}[A(u \oplus h) B(u \oplus z \oplus h)]=n \underset{u, z}{\mathbb{E}}[A(u) B(u \oplus z)]
$$

- We have that $\underset{u, z}{\mathbb{E}}[A(u) B(u \oplus z)] \leq \frac{1}{n^{1 /(1-\eta)}}$
(proof by hypercontractivity, next slide).
- Theorem follows by noting that $n \cdot \frac{1}{n^{1 /(1-\eta)}}=\frac{1}{n^{\eta /(1-\eta)}}$.

Khot-Vishnoi - Classical bound (2)

$$
\begin{array}{ll}
\mathbb{E}_{u, z}[A(u) B(u \oplus z)] & \begin{array}{c}
\left(T_{1-2 \eta} F\right)(u)=\mathbb{E}_{z}[F] \\
\text { noise operator }
\end{array} \\
=\mathbb{E}_{u}\left[A(u) \cdot\left(T_{1-2 \eta} B\right)(u)\right] & \begin{array}{l}
\left\|T_{p} F\right\|_{2} \leq\|F\|_{1}+\rho^{2} \\
=\mathbb{E}_{u}
\end{array}\left[\left(T_{\sqrt{1-2 \eta}} A\right)(u) \cdot\left(T_{\sqrt{1-2 \eta}} B\right)(u)\right] \\
\leq\left\|T_{\sqrt{1-2 \eta}} A\right\|_{2} \cdot\left\|T_{\sqrt{1-2 \eta}} B\right\|_{2} \\
\leq\|A\|_{2-2 \eta} \cdot\|B\|_{2-2 \eta} \quad \\
=\left(\mathbb{E}_{u}[A(u)]\right)^{1 /(2-2 \eta)} \cdot\left(\mathbb{E}_{u}[B(u)]\right)^{1 /(2-2 \eta)} \\
=\frac{1}{n^{1 /(1-\eta)}} . & \mathbb{E}_{u}[A(u)]=1 / n
\end{array}
$$

Khot-Vishnoi - Classical bound (2)

$$
\begin{aligned}
& \mathbb{E}_{u, z}[A(u) B(u \oplus z)] \quad \begin{array}{l}
\left(T_{1-2 \eta} F\right)(u)=\mathbb{E}_{z}[F(\\
\text { noise operator }
\end{array} \\
& =\mathbb{E}_{u}\left[A(u) \cdot\left(T_{1-2 \eta} B\right)(u)\right] \quad \begin{array}{ll}
\\
=\mathbb{E}_{u}\left[\left(T_{\sqrt{1-2 \eta}} A\right)(u) \cdot\left(T_{\sqrt{1-2 \eta}} B\right)(u)\right] \\
\leq\left\|T_{\sqrt{1-2 \eta}} A\right\|_{2} \cdot\left\|T_{\sqrt{1-2 \eta}} B\right\|_{2} \\
\leq\|A\|_{2-2 \eta} \cdot\|B\|_{2-2 \eta} \quad \begin{array}{l}
\left\|T_{p} F\right\|_{2} \leq\|F\|_{1+\rho^{2}} \\
\text { hypercontractive inequality }
\end{array} \\
=\left(\mathbb{E}_{u}[A(u)]\right)^{1 /(2-2 \eta)} \cdot\left(\mathbb{E}_{u}[B(u)]\right)^{1 /(2-2 \eta)} \\
=\frac{1}{n^{1 /(1-\eta)}} . & \mathbb{E}_{u}[A(u)]=1 / n
\end{array}
\end{aligned}
$$

Khot-Vishnoi - Classical bound (2)

$$
\begin{aligned}
& \mathbb{E}_{u, z}[A(u) B(u \oplus z)] \quad \begin{array}{l}
\left(T_{1-2 \eta} F\right)(u)=\mathbb{E}_{z}[F(\\
\text { noise operator }
\end{array} \\
& =\mathbb{E}_{u}\left[A(u) \cdot\left(T_{1-2 \eta} B\right)(u)\right] \quad \\
& =\mathbb{E}_{u}\left[\left(T_{\sqrt{1-2 \eta}} A\right)(u) \cdot\left(T_{\sqrt{1-2 \eta}} B\right)(u)\right] \\
& \leq\left\|T_{\sqrt{1-2 \eta}} A\right\|_{2} \cdot\left\|T_{\sqrt{1-2 \eta}} B\right\|_{2} \\
& \leq\|A\|_{2-2 \eta} \cdot\|B\|_{2-2 \eta} \quad \begin{array}{l}
\left\|T_{p} F\right\|_{2} \leq\|F\|_{1+\rho^{2}} \\
\text { hypercontractive inequality }
\end{array} \\
& =\left(\mathbb{E}_{u}[A(u)]\right)^{1 /(2-2 \eta)} \cdot\left(\mathbb{E}_{u}[B(u)]\right)^{1 /(2-2 \eta)} \\
& =\frac{1}{n^{1 /(1-\eta)}} .
\end{aligned}
$$

Khot-Vishnoi - Classical bound (2)

$$
\begin{aligned}
& \mathbb{E}_{u, z}[A(u) B(u \oplus z)] \\
& =\mathbb{E}_{u}\left[A(u) \cdot\left(T_{1-2 \eta} B\right)(u)\right] \quad \begin{array}{c}
\left(T_{1-2 \eta} F\right)(u)=\mathbb{E}_{z}[F(u \oplus z)] \\
\text { noise operator }
\end{array} \\
& =\mathbb{E}_{u}\left[\left(T_{\sqrt{1-2 \eta}} A\right)(u) \cdot\left(T_{\sqrt{1-2 \eta}} B\right)(u)\right] \\
& \leq\left\|T_{\sqrt{1-2 \eta}} A\right\|_{2} \cdot\left\|T_{\sqrt{1-2 \eta}} B\right\|_{2} \\
& \leq\|A\|_{2-2 \eta} \cdot\|B\|_{2-2 \eta} \quad \begin{array}{l}
\left\|T_{p} F\right\|_{2} \leq\|F\|_{1+\rho^{2}} \\
=\left(\mathbb{E}_{u}[A(u)]\right)^{1 /(2-2 \eta)} \cdot\left(\mathbb{E}_{u}[B(u)]\right)^{1 /(2-2 \eta)} \\
=\frac{1}{n^{1 /(1-\eta)}} \cdot
\end{array} \mathbb{E}_{u}[A(u)]=1 / n
\end{aligned}
$$

Khot-Vishnoi - Classical bound (2)

$$
\begin{aligned}
& \mathbb{E}_{u, z}[A(u) B(u \oplus z)] \\
& =\mathbb{E}_{u}\left[A(u) \cdot\left(T_{1-2 \eta} B\right)(u)\right] \\
& =\mathbb{E}_{u}\left[(T _ { \sqrt { 1 - 2 \eta } } A) (u) \cdot \left(T_{\sqrt{1-2 \eta}} L\right.\right. \\
& \leq\left\|T_{\sqrt{1-2 \eta}} A\right\|_{2} \cdot\left\|T_{\sqrt{1-2 \eta}} B\right\|_{2} \\
& \leq\|A\|_{2-2 \eta} \cdot\|B\|_{2-2 \eta}
\end{aligned}
$$

$$
=\mathbb{E}_{u}\left[\left(T_{\sqrt{1-2 \eta}} A\right)(u) \cdot\left(T_{\sqrt{1-2 \eta}} B\right)(u)\right]
$$

$\left\|T_{\rho} F\right\|_{2} \leq\|F\|_{1+\rho^{2}}$
hypercontractive inequality
$=\left(\mathbb{E}_{u}[A(u)]\right)^{1 /(2-2 \eta)} \cdot\left(\mathbb{E}_{u}[B(u)]\right)^{1 /(2-2 \eta)}$
$=\frac{1}{n^{1 /(1-\eta)}}$.
$\mathbb{E}_{u}[A(u)]=1 / n$

Khot-Vishnoi - Classical bound (2)

$\mathbb{E}_{u, z}[A(u) B(u \oplus z)]$
$=\mathbb{E}_{u}\left[A(u) \cdot\left(T_{1-2 \eta} B\right)(u)\right]$
$=\mathbb{E}_{u}\left[\left(T_{\sqrt{1-2 \eta}} A\right)(u) \cdot\left(T_{\sqrt{1-2 \eta}} B\right)(u)\right]$
$\leq\left\|T_{\sqrt{1-2 \eta}} A\right\|_{2} \cdot\left\|T_{\sqrt{1-2 \eta}} B\right\|_{2}$
$\leq\|A\|_{2-2 \eta} \cdot\|B\|_{2-2 \eta} \quad \begin{aligned} & \left\|T_{\rho} F\right\|_{2} \leq\|F\|_{1+\rho^{2}} \\ & \text { hypercontractive inequality }\end{aligned}$
$=\left(\mathbb{E}_{u}[A(u)]\right)^{1 /(2-2 \eta)} \cdot\left(\mathbb{E}_{u}[B(u)]\right)^{1 /(2-2 \eta)}$
$=\frac{1}{n^{1 /(1-\eta)}}$.

Khot-Vishnoi - Classical bound (2)

$\mathbb{E}_{u, z}[A(u) B(u \oplus z)]$
$=\mathbb{E}_{u}\left[A(u) \cdot\left(T_{1-2 \eta} B\right)(u)\right]$
$\left(T_{1-2 \eta} F\right)(u)=\mathbb{E}_{z}[F(u \oplus z)]$ noise operator
$=\mathbb{E}_{u}\left[\left(T_{\sqrt{1-2 \eta}} A\right)(u) \cdot\left(T_{\sqrt{1-2 \eta}} B\right)(u)\right]$
$\leq\left\|T_{\sqrt{1-2 \eta}} A\right\|_{2} \cdot\left\|T_{\sqrt{1-2 \eta}} B\right\|_{2}$
$\leq\|A\|_{2-2 \eta} \cdot\|B\|_{2-2 \eta}$
$\left\|T_{\rho} F\right\|_{2} \leq\|F\|_{1+\rho^{2}}$
hypercontractive inequality
$=\left(\mathbb{E}_{u}[A(u)]\right)^{1 /(2-2 \eta)} \cdot\left(\mathbb{E}_{u}[B(u)]\right)^{1 /(2-2 \eta)}$
$=\frac{1}{n^{1 /(1-\eta)}}$.

$$
\mathbb{E}_{u}[A(u)]=1 / n
$$

KV Bell Inequality violation

KV Bell Inequality violation

Setting $\eta=\frac{1}{2}-\frac{1}{\log n}$

KV Bell Inequality violation

KV Bell Inequality violation
Setting $\eta=\frac{1}{2}-\frac{1}{\log n}$

- Entangled value $(1-2 \eta)^{2} \sim \frac{1}{(\log n)^{2}}$
- Classical value is roughly $\frac{1}{n^{\eta}(1-n)} \sim \frac{1}{n}$
- Violation $\frac{\omega_{n}^{*}(\mathrm{KV})}{\omega(\mathrm{KV})}=\Omega\left(\frac{n}{(\log n)^{2}}\right)$
- Close to optimal, both in terms of local dimension and number of outputs.

KV Bell Inequality violation

KV Bell Inequality violation
Setting $\eta=\frac{1}{2}-\frac{1}{\log n}$

- Entangled value $(1-2 \eta)^{2} \sim \frac{1}{(\log n)^{2}}$
- Classical value is roughly $\frac{1}{n^{\eta /(1-\eta)}} \sim \frac{1}{n}$
- Violation $\frac{\omega_{n}^{*}(\mathrm{KV})}{\omega(\mathrm{KV})}=\Omega\left(\frac{n}{(\log n)^{2}}\right)$
- Close to optimal, both in terms of local dimension and number of outputs.

KV Bell Inequality violation

KV Bell Inequality violation

Setting $\eta=\frac{1}{2}-\frac{1}{\log n}$

- Entangled value $(1-2 \eta)^{2} \sim \frac{1}{(\log n)^{2}}$
- Classical value is roughly $\frac{1}{n^{\eta /(1-\eta)}} \sim \frac{1}{n}$
- Violation $\frac{\omega_{n}^{*}(\mathrm{KV})}{\omega(\mathrm{KV})}=\Omega\left(\frac{n}{(\log n)^{2}}\right)$
- Close to optimal, both in terms of local dimension and number of outputs.

KV Bell Inequality violation

KV Bell Inequality violation

Setting $\eta=\frac{1}{2}-\frac{1}{\log n}$

- Entangled value $(1-2 \eta)^{2} \sim \frac{1}{(\log n)^{2}}$
- Classical value is roughly $\frac{1}{n^{\eta /(1-\eta)}} \sim \frac{1}{n}$
- Violation $\frac{\omega_{n}^{*}(\mathrm{KV})}{\omega(\mathrm{KV})}=\Omega\left(\frac{n}{(\log n)^{2}}\right)$
- Close to optimal, both in terms of local dimension and number of outputs.

Table of Contents

(1) Introduction
(2) The Hidden Matching game
(3) The Khot-Vishnoi game

4 Conclusions

Conclusions and Open Problems

Comparison

	JP	HM	KV
Local Dim	n	n	n
\#Outputs	n	n	n
\#Inputs	n	$2^{n}, \frac{n}{2}$	$\frac{2^{n}}{n}$
Violation	$\frac{\sqrt{n}}{\log n}$	$\frac{\sqrt{n}}{\log n}$	$\frac{n}{(\log n)^{2}}$

Open problems

- Close the gap with the upper bound $O(n)$
- Reduce the number of inputs.
- Consider games with more than two players

Conclusions and Open Problems

Comparison

	JP	HM	KV
Local Dim	n	n	n
\#Outputs	n	n	n
\#Inputs	n	$2^{n}, \frac{n}{2}$	$\frac{2^{n}}{n}$
Violation	$\frac{\sqrt{n}}{\log n}$	$\frac{\sqrt{n}}{\log n}$	$\frac{n}{(\log n)^{2}}$

Open problems

Conclusions and Open Problems

Comparison

	JP	HM	KV
Local Dim	n	n	n
\#Outputs	n	n	n
\#Inputs	n	$2^{n}, \frac{n}{2}$	$\frac{2^{n}}{n}$
Violation	$\frac{\sqrt{n}}{\log n}$	$\frac{\sqrt{n}}{\log n}$	$\frac{n}{(\log n)^{2}}$

Open problems

- Close the gap with the upper bound $O(n)$.
- Reduce the number of inputs.
- Consider games with more than two players.

Conclusions and Open Problems

Comparison

	JP	HM	KV
Local Dim	n	n	n
\#Outputs	n	n	n
\#Inputs	n	$2^{n}, \frac{n}{2}$	$\frac{2^{n}}{n}$
Violation	$\frac{\sqrt{n}}{\log n}$	$\frac{\sqrt{n}}{\log n}$	$\frac{n}{(\log n)^{2}}$

Open problems

- Close the gap with the upper bound $O(n)$.
- Reduce the number of inputs.
- Consider games with more than two players.

Conclusions and Open Problems

Comparison

	JP	HM	KV
Local Dim	n	n	n
\#Outputs	n	n	n
\#Inputs	n	$2^{n}, \frac{n}{2}$	$\frac{2^{n}}{n}$
Violation	$\frac{\sqrt{n}}{\log n}$	$\frac{\sqrt{n}}{\log n}$	$\frac{n}{(\log n)^{2}}$

Open problems

- Close the gap with the upper bound $O(n)$.
- Reduce the number of inputs.
- Consider games with more than two players.

