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Local realism?

Classical physics:

Locality: no faster than light influences.
Realism: values are determined before measurement.

[EPR’35]: Quantum physics seems to violate local
realism. Is it wrong or incomplete?

[Bell’64]: Every local realistic theory must satisfy certain
constraints (Bell Inequality).

Experiments suggest that nature violates Bell Inequalities!

We study quantitatively how large the deviation from
classical predictions can be.
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Non-local games

Alice receives x and Bob receives y,
where (x, y) are chosen from the
distribution π.
Alice outputs a and Bob outputs b.

A predicate specifies winning outputs.

Goal: maximize winning probability.

Classical strategies: functions A(x), B(y).
The classical value ω(G) is the maximum winning
probability over all classical strategies.

Quantum strategies: shared entangled state;
for each x measurement {Axa}; for each y {By

b }.
Entangled value ω∗(G).
ω∗n(G) using entangled state of local dimension ≤ n.
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Bell Inequality Violation

A Bell Inequality is an upper bound on ω(G).
Violation: ω∗(G) larger than ω(G).

Quantified by ratio ω∗(G)
ω(G) .

CHSH [Clauser, Horne, Shimony, Holt, 1969]

Classic example where
ω∗2(CHSH)

ω(CHSH)
∼ 0.85

0.75
We want large violations!

Strong separation between quantum and classical worlds.
Typically easier to verify experimentally.

Study violation as a function of:

Local dimension of the entangled state.

Number of outputs.
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What is known?

How large can the ratio ω∗n(G)
ω(G)

be?

Upper Bounds:

[Junge, Palazuelos, Pérez-Garćıa, Villanueva, Wolf ’09]:
with n-dimensional entanglement: O(n).

[Junge, Palazuelos ’10]: with k possible outputs: O(k).

Lower Bounds:

[Folklore]: nε by parallel repetition of “magic square”.

[Kempe, Regev, Toner ’08]: nε
′

from Unique Games.

[JPPVW’09]: Ω(
√
n/(log n)2).

[JP ’10]: Ω(
√
n/ log n). (see next talk)

Non-explicit; they use tools from operator space theory.
[Regev ’11] reproved this result with probabilistic tools.
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with n-dimensional entanglement: O(n).

[Junge, Palazuelos ’10]: with k possible outputs: O(k).

Lower Bounds:

[Folklore]: nε by parallel repetition of “magic square”.

[Kempe, Regev, Toner ’08]: nε
′

from Unique Games.

[JPPVW’09]: Ω(
√
n/(log n)2).

[JP ’10]: Ω(
√
n/ log n). (see next talk)

Non-explicit; they use tools from operator space theory.
[Regev ’11] reproved this result with probabilistic tools.

7 / 21



Introduction The Hidden Matching game The Khot-Vishnoi game Conclusions

What is known?

How large can the ratio ω∗n(G)
ω(G)

be?

Upper Bounds:
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with n-dimensional entanglement: O(n).

[Junge, Palazuelos ’10]: with k possible outputs: O(k).

Lower Bounds:

[Folklore]: nε by parallel repetition of “magic square”.

[Kempe, Regev, Toner ’08]: nε
′

from Unique Games.

[JPPVW’09]: Ω(
√
n/(log n)2).

[JP ’10]: Ω(
√
n/ log n). (see next talk)

Non-explicit; they use tools from operator space theory.
[Regev ’11] reproved this result with probabilistic tools.

7 / 21



Introduction The Hidden Matching game The Khot-Vishnoi game Conclusions

What is known?

How large can the ratio ω∗n(G)
ω(G)

be?

Upper Bounds:
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Our results

Hidden Matching game

Variant of “Hidden Matching” from communication
complexity. [Bar-Yossef, Jayram, Kerenidis, STOC’04].

n outputs; entanglement dimension n.

Violation of order
√
n/ log n.

Khot-Vishnoi game

From an example of integrality gap for Unique Games
[Khot, Vishnoi, FOCS’05] and a Quantum Rounding
technique [Kempe, Regev, Toner, FOCS’08]

n outputs; entanglement dimension n.

Violation of order n/(log n)2.
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Winning probability 1 with n-dimensional entanglement.

Classical bound 1
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Khot-Vishnoi - Quantum strategy

For any n and η ∈ [0, 1/2], there exists a quantum strategy
that wins with probability at least (1− 2η)2.

For a ∈ {0, 1}n, define |va〉 = ((−1)ai/
√
n)i∈[n].

For all a, b, 〈va, vb〉 = 1− 2d(a, b)/n
The vectors {va | a ∈ x} are an orthonormal basis of Rn.

Quantum strategy (for Alice, similar for Bob):

Shared maximally entangled state, local dimension n.
On input x, projective measurement {va | a ∈ x}.
Output the measurement outcome a.
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Khot-Vishnoi - Quantum strategy (2)

Winning probability is at least (1− 2η)2.

Probability to obtain a, b is 〈v
a,vb〉2
n

.

Because of the maximally entangled state.

For inputs x, y, winning probability is
1

n

∑
a∈x

〈va, va⊕z〉2 =
1

n

∑
a∈x

(
1− 2d(a, a⊕ z)

n

)2

= (1− 2|z|
n

)2.

The overall winning probability is

Ez[(1− 2|z|
n

)2] ≥
(
Ez[1− 2|z|

n
]
)2

= (1− 2η)2
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Khot-Vishnoi - Classical bound

Every classical strategy has winning probability ≤ 1/nη/(1−η)

Fix strategy. Functions A,B : {0, 1}n → {0, 1}.
A(u) = 1⇔ Alice’s output on coset u⊕H is u.

Eu[A(u)] = 1/n (Alice chooses one element per coset)
Players win ⇔

∑
h∈H A(u⊕ h)B(u⊕ z ⊕ h) = 1.

Winning probability is E
u,z

[
∑
h∈H

A(u⊕ h)B(u⊕ z ⊕ h)]

=
∑
h∈H

E
u,z

[A(u⊕ h)B(u⊕ z ⊕ h)] = n E
u,z

[A(u)B(u⊕ z)]

We have that E
u,z

[A(u)B(u⊕ z)] ≤ 1

n1/(1−η)

(proof by hypercontractivity, next slide).

Theorem follows by noting that n · 1
n1/(1−η) = 1

nη/(1−η)
.
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Theorem follows by noting that n · 1
n1/(1−η) = 1

nη/(1−η)
.
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Khot-Vishnoi - Classical bound (2)

Eu,z[A(u)B(u⊕ z)]

= Eu[A(u) · (T1−2ηB)(u)]

(T1−2ηF )(u) = Ez [F (u⊕ z)]
noise operator

= Eu[(T√1−2ηA)(u) · (T√1−2ηB)(u)]

≤
∥∥T√1−2ηA

∥∥
2
·
∥∥T√1−2ηB

∥∥
2

≤ ‖A‖2−2η · ‖B‖2−2η

‖TρF‖2 ≤ ‖F‖1+ρ2
hypercontractive inequality

= (Eu[A(u)])1/(2−2η) · (Eu[B(u)])1/(2−2η)

= 1
n1/(1−η) . Eu[A(u)] = 1/n
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KV Bell Inequality violation

KV Bell Inequality violation

Setting η = 1
2
− 1

logn

Entangled value (1− 2η)2 ∼ 1
(logn)2

Classical value is roughly 1
nη/(1−η)

∼ 1
n

Violation ω∗n(KV)
ω(KV)

= Ω( n
(logn)2

)

Close to optimal, both in terms of local dimension
and number of outputs.
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Conclusions and Open Problems

Comparison

JP HM KV
Local Dim n n n
#Outputs n n n
#Inputs n 2n, n

2
2n

n

Violation
√
n

logn

√
n

logn
n

(logn)2

Open problems

Close the gap with the upper bound O(n).

Reduce the number of inputs.

Consider games with more than two players.
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