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Abstract

Bell inequality violations correspond to behavior of entangled quantum systems that cannot
be simulated classically. We give two new two-player games with Bell inequality violations that
are stronger, fully explicit, and arguably simpler than earlier work. The first game is based
on the Hidden Matching problem of quantum communication complexity, introduced by Bar-
Yossef, Jayram, and Kerenidis. This game can be won with probability 1 by a quantum strategy
using a maximally entangled state with local dimension n (e.g., logn EPR-pairs), while we show
that the winning probability of any classical strategy differs from 1

2
by at most O(log n/

√
n).

The second game is based on the integrality gap for Unique Games by Khot and Vishnoi and the
quantum rounding procedure of Kempe, Regev, and Toner. Here n-dimensional entanglement
allows to win with probability 1/(logn)2, while the best classical winning probability is 1/n.
This near-linear ratio (“Bell inequality violation”) is near-optimal, both in terms of the local
dimension of the entangled state and in terms of the number of possible outputs.

1 Introduction

One of the most striking features of quantum mechanics is the fact that entangled particles can
exhibit correlations that cannot be reproduced or explained by classical physics (i.e., by “local
hidden-variable theories”). This was first noted by Bell, in response to Einstein-Podolsky-Rosen’s
challenge to the completeness of quantum mechanics. Experimental realization of such correlations
is the strongest proof we have that nature does not behave according to classical physics.

Here we study quantitatively how much such “quantum correlations” can deviate from what is
achievable classically. The setup for a game G is as follows. Two space-like separated parties, called
Alice and Bob, receive inputs x and y according to some fixed and known probability distribution π,
and are required to produce outputs a and b. There is a predicate specifying which outputs a, b
“win” the game on inputs x, y. The goal is to design games where quantum strategies have much
higher winning probability than the best classical strategy.

Quantum strategies start out with some fixed entangled state |ψ〉, say with local dimension n; a
typical example would be log n shared EPR-pairs. For each input x, Alice has a set of measurement
operators {Aa

x} and for each y, Bob has measurement operators {Bb
y}. They apply the measurement

corresponding to x and y to the entangled state |ψ〉, producing outputs a and b, respectively. No
communication takes place between them. Depending on which is more convenient for the game G
at hand, we will define its entangled value ω∗(G) as either the maximum winning probability, or the
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maximum advantage (winning probability minus losing probability) among all quantum strategies
for it. When restricting to strategies that use entanglement of local dimension n, the value is
denoted ω∗

n(G). This should be contrasted with the classical value ω(G) = ω∗
0(G) of the game,

which is the maximum winning probability among all classical, non-entangled strategies.
It is well-known that there are games G where ω∗

n(G) is higher than ω(G). Such examples
are known as “Bell inequality violations”; the CHSH game is a famous one with n = 2. We are
interested in designing games G maximizing the ratio between quantum and classical values. The
larger this ratio, the larger the “difference” between quantum and classical worlds, and the larger
the “noise-resistance” of the violation. The ratio can be analyzed in two different ways:

1. max ω∗
n
(G)

ω(G) as a function of n, the local dimension of the entangled state

2. max ω∗(G)
ω(G) as a function of k, the number of possible outputs each of Alice and Bob can give

In two recent papers, Junge et al. [3, 2] studied both settings using tools from Banach space and
operator space theory. They proved that the first ratio cannot be larger than O(n), and (implicitly)
showed the existence of a game where the ratio is Ω(

√
n/ log n). For the second ratio, Junge and

Palazuelos [2] recently showed an upper bound of O(k), and they showed the existence of a game
where the ratio is Ω(

√
k/ log k). Theirs is an existence proof, involving a random choice of signs

and hence not fully explicit, though they in fact show that almost all choices of signs will work.
In this paper we exhibit two stronger and more explicit Bell inequality violations.

2 The Hidden Matching game

The “Hidden Matching” problem was introduced by Bar-Yossef et al. [1], and many variants of it
were subsequently studied. The original version is as follows. Let n be a power of 2. Alice is given
input x ∈ {0, 1}n and Bob is given a perfect matching M (i.e., a partition of [n] into n/2 disjoint
pairs (i, j)). Both are uniformly distributed. We allow one-way communication from Alice to Bob,
and Bob outputs an (i, j) ∈ M and v ∈ {0, 1}. They win if v = xi ⊕ xj . Using tools from Fourier
analysis, we show that if Alice sends Bob a c-bit message, then their optimal winning probability
is 1

2 + Θ( c√
n
). Bar-Yossef et al. [1] earlier proved this for c ∼ √

n, using information theory.

The non-local game based on this is as follows: the inputs x and M are the same as before,
but now Alice and Bob don’t communicate. Instead, Alice outputs an a ∈ {0, 1}log n, Bob outputs
b ∈ {0, 1}log n and (i, j) ∈M , and they win the game if the outputs satisfy the relation (a⊕ b) · (i⊕
j) = xi ⊕ xj, where the left-hand side is the inner product of two log n-bit strings modulo 2. As
stated, Alice has n possible outputs while Bob has O(n3). However, one can massage the problem
such that there are only n possible outputs for Bob as well.

A classical strategy that wins this non-local game induces a protocol for the original Hidden
Matching problem with communication c = log n bits and the same winning probability. Hence our
bound for the original problem implies that no classical strategy can win with probability greater
than 1

2 + O( log n√
n

). In contrast, there is a strategy that wins with probability 1 using log n EPR-

pairs. By defining the value of the game as the advantage of the best strategy (rather than its
winning probability), we get entangled value ω∗

n(G) = 1 and classical value ω(G) = O( log n√
n

). This

gives a Bell inequality violation of order
√
n/ log n. This order is similar to the one of Junge et

al. [3, 2], but our game is simple and fully explicit. Clearly, explicitness is a prerequisite for any
future experimental realization.
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3 The Khot-Vishnoi game

Our second non-local game derives from the work of Khot and Vishnoi [5] on the famous Unique

Games Conjecture. They exhibited a large integrality gap for the SDP-relaxation of certain specific
Unique Games. We use essentially the same game, though for our purposes we won’t have to worry
about SDPs or the UGC. Consider the group {0, 1}n of all n-bit strings with bitwise addition mod 2,
and let H be the subgroup containing the n Hadamard codewords. This subgroup partitions {0, 1}n

into 2n/n cosets of n elements each. Alice receives a uniformly random coset x as input, which
we can think of as u+H for uniformly random u ∈ {0, 1}n. Bob receives a coset y obtained from
Alice’s by adding a string of low Hamming weight, namely y = x+ z = u+ z +H, where each bit
of z ∈ {0, 1}n is set to 1 with probability η, independently of the other bits. Notice that addition
of z gives a natural bijection between the two cosets, mapping each element of the first coset to
a relatively nearby element of the second coset; namely, the distance between the two elements is
the Hamming weight of z, which is typically around ηn. Each player is supposed to output one
element from its coset, and their goal is for their elements to match under the bijection. In other
words, Alice outputs an element a ∈ x, Bob outputs b ∈ y, and they win the game iff a+ b = z.1

Based on the integrality gap analysis of Khot and Vishnoi, we show that no classical strategy
can win this game with probability greater than 1/nη/(1−η). In contrast, using a simple version of
the “quantum rounding” technique of [4], we exhibit a quantum strategy that uses the maximally
entangled state in n dimensions and wins with probability at least (1− 2η)2. Accordingly, we have
entangled value ω∗

n(G) ≥ (1 − 2η)2 and classical value ω(G) ≤ 1/nη/(1−η) for this game. Setting
the noise-rate to η = 1/2 − 1/ log n, we obtain a Bell inequality violation of order n/(log n)2. This
is near-optimal both in terms of the local dimension of the entangled state, and in terms of the
number of possible outputs of the two players.

Full version: See http://arxiv.org/abs/1012.5043
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1Note that the winning condition for this game is a “randomized predicate”, as there are n possible predicates
(one for each z in x + y) corresponding to each pair of inputs x, y. However, it is easy to see that with very high
probability exactly one of these n constraints dominates (namely, the one corresponding to a z of Hamming weight
around ηn). This allows one to modify the game in a straightforward manner, making the predicate deterministic.
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