Isotropic Entanglement

Ramis Movassagh¹ and Alan Edelman¹

¹Department of Mathematics, M.I.T.

QIP, January 2011

< /₽ > < E > .

Acknowledgments

- Peter W. Shor
- Jeffrey Goldstone
- X-G Wen, Patrick Lee, Peter Young, Mehran Kardar, Aram Harrow, Salman Beigi

< A > <

The eigenvalue distribution: Motivation

Synonymous: (Energy) Spectrum; eigenvalue distribution, density of states, level densities etc.

Note: Generally the Spectrum of QMBS is hard to find "exactly" 1

- First step for all eigenvalue problems (e.g. quantum mechanics) of sums of matrices
- Physical: Partition function and therefore the thermodynamics of QMBS
- <u>Goal</u>: Given the geometry, local spin states, and type of local interaction, capture the spectrum of the *H*.

¹B. Brown, S. T. Flammia, N. Schuch (2010), "Computational Difficulty of Computing the Density of States"

Gap of Ignorance

Philosophy of Isotropic Entanglement Theory of Isotropic Entanglement The Method of Isotropic Entanglement More Numerical results

Sums of non-commuting Hamiltonians

$$H = \sum_{k=1}^{N-1} \mathbb{I}_{d^{k-1}} \otimes H_{k,k+1} \otimes \mathbb{I}_{d^{N-k-1}}.$$

● Generic local terms ⇒ Quantum Spin Glasses

A (1) > (1) > (1)

Interactions:
$$H = \sum_{k=1}^{N-1} (\mathbb{I} \otimes H_{k,k+1} \otimes \mathbb{I}) = H_{\text{odd}} + H_{\text{even}}$$

$H_{k,k+1}: d^2 \times d^2$ Generic matrix

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Interactions:
$$H = \sum_{k=1}^{N-1} (\mathbb{I} \otimes H_{k,k+1} \otimes \mathbb{I}) = H_{\text{odd}} + H_{\text{even}}$$

$H_{k,k+1}: d^2 \times d^2$ Generic matrix

Ramis Movassagh QIP 2011 arXiv: 1012.5039 [quant-ph]

э

(日) (同) (三) (三)

 $H = H_{\text{odd}} + H_{\text{even}} = Q_A A Q_A^{-1} + Q_B B Q_B^{-1}$

Change bases such that H_{odd} is diagonal. Therefore,

$$H = A + Q_q^{-1} B Q_q$$

 $Q_q \equiv \left(Q_B
ight)^{-1} Q_A \qquad \sim N \quad ext{random parameters}$

Classical sum: p = 1

The Orthogonal Group O(d^N)

Isotropic (Free) sum: p = 0

The Orthogonal Group O(dN)

Isotropic, Quantum, and Classical

The Orthogonal Group O(d^N)

Quantum as a "sliding" sum of classical and iso

The Orthogonal Group O(dN)

Local terms: Wishart matrices

The action starts at the fourth moment

Theorem

(The Matching Three Moments Theorem) The first three moments of the quantum, iso and classical sums are equal.

・ 同 ト ・ 三 ト ・

The Departure Theorem

The Departure Theorem

$$m_{4}^{iso} = \frac{1}{dN} \mathbb{E} \Big\{ \operatorname{Tr} \Big[A^{4} + 4A^{3} Q^{-1} B Q + 4A^{2} Q^{-1} B^{2} Q + 4A Q^{-1} B^{3} Q + 2 \Big(\mathbf{A} Q^{-1} \mathbf{B} Q \Big)^{2} + B^{4} \Big] \Big\}$$

$$m_{4}^{q} = \frac{1}{dN} \mathbb{E} \Big\{ \operatorname{Tr} \Big[A^{4} + 4A^{3} Q_{q}^{-1} B Q_{q} + 4A^{2} Q_{q}^{-1} B^{2} Q_{q} + 4A Q_{q}^{-1} B^{3} Q_{q} + 2 \Big(\mathbf{A} Q_{q}^{-1} \mathbf{B} Q_{q} \Big)^{2} + B^{4} \Big] \Big\}$$

$$m_{4}^{c} = \frac{1}{dN} \mathbb{E} \Big\{ \operatorname{Tr} \Big[A^{4} + 4A^{3} B + 4A^{2} B^{2} + 4AB^{3} + 2 \Big(\mathbf{A} \mathbf{B} \Big)^{2} + B^{4} \Big] \Big\}$$

< /□ > <

э

Quantum agony

W CLOSED CHOIN drop the common (re-3) in all of below: 3 57 9 Acres 2x1x1 repeat twice for 2×1×1 reveal formance 8 10 11 14 3×(4-2) ×2 (A) (A) N (m(K-2) 2x WK-2 2× (u-s) ×1 8 ALIXE A TOO MAN (u-3) 2 (u-2) (u-3) IN COS (k-2) 2 dx (k-100 (V-4) - 2 IO) NOO who not le-ula 2 x 2 (B) 300 W K-4 N G (4-4) × 2 × (4-4) 18/10 march, news, root (K-9).2,2 a-9).2 1 NO (8-4) .2. (4-3) Ka repeat onte (u-3) AL. (18) repeat 14-41. 24-41 1 AL O 4-21 AV. 12-2 1K-81-1K-91 . 1 (plan root Wal . Ital . 1 terit x (V-1 1216 1 @.@ abre. cos A) 1x2x101x1 OR W P 6.0 (any 12 nor (K= +) anceres x K-4 abr's t 241414 (4-4)

Ramis Movassagh

QIP 2011 arXiv: 1012.5039 [quant-ph]

э

Resolving the agony

Lemma: Only these matter

$$\frac{1}{m}\mathbb{E}\mathrm{Tr}[(H^{(3)}\otimes\mathbb{I}_{d^{N-2}})(\mathbb{I}\otimes H^{(4)}\otimes\mathbb{I}_{d^{N-3}})(H^{(3)}\otimes\mathbb{I}_{d^{N-2}})(\mathbb{I}\otimes H^{(4)}\otimes\mathbb{I}_{d^{N-3}})]$$

$$= \frac{1}{d^3} \left\{ \mathbb{E} \left(H_{i_3 i_4, j_3 j_4}^{(3)} H_{i_3 p_4, j_3 k_4}^{(3)} \right) \mathbb{E} \left(H_{j_4 i_5, k_4 k_5}^{(4)} H_{i_4 i_5, p_4 k_5}^{(4)} \right) \right\},$$

Quantum as a convex combination of classical and iso

• Use fourth moments to form a hybrid theory

$$\gamma_2^q=
ho\gamma_2^c+(1\!-\!
ho)\,\gamma_2^{iso}$$

 $\gamma_2^{(ullet)}$ is found from the fourth moments

A (1) < A (1) < A (1) < A (1) </p>

The Slider Theorem

Theorem

(The Slider Theorem) The quantum kurtosis lies in between the classical and the iso kurtoses, $\gamma_2^{iso} \leq \gamma_2^q \leq \gamma_2^c$. Therefore there exists a $0 \leq p \leq 1$ such that $\gamma_2^q = p\gamma_2^c + (1-p)\gamma_2^{iso}$. Further, $\lim_{N\to\infty} p = 1$.

(日) (同) (三) (三)

Universality of p

Corollary

(Universality) $p \mapsto p(N, d, \beta)$, namely, it is independent of the distribution of the local terms.

Here $\beta = 1$. Therefore, p only depends on eigenvectors!

Suppose you have the first four moments

Ramis Movassagh QIP 2011 arXiv: 1012.5039 [quant-ph]

< /i>

< ∃→

Summary: Method of Isotropic Entanglement

Ramis Movassagh QIP 2011 arXiv: 1012.5039 [quant-ph]

э

Local terms: Wishart matrices

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Local terms: sign [rand(d^2 , 1)]

This is just the beginning

$\mathsf{Thank}Q$

Ramis Movassagh QIP 2011 arXiv: 1012.5039 [quant-ph]

< /□ > <

QMBS: Eigenvectors (States)

Capture using: MPS, DMRG, TPS, PEPS, MERA etc.

$$|\Psi\rangle = \sum_{i_1,i_2,...,i_N=1}^d c_{i_1,i_2,...,i_N} |i_1\rangle \otimes |i_2\rangle \otimes ... \otimes |i_N\rangle$$

Figure: Each arrow represents a d dimensional spin. Each edge represents an interaction.

< D > < P > < P > < P >

Do we do better than four moment accuracy?

Because of the departure theorem.

$$m_{5} = \frac{1}{m} \mathbb{E} \operatorname{Tr} \left(A^{5} + 5A^{4} Q_{\bullet}^{T} B Q_{\bullet} + 5A^{3} Q_{\bullet}^{T} B^{2} Q_{\bullet} + 5A^{2} Q_{\bullet}^{T} B^{3} Q_{\bullet} + \frac{5A \left(A Q_{\bullet}^{T} B Q_{\bullet} \right)^{2}}{5 \left(A Q_{\bullet}^{T} B Q_{\bullet} \right)^{2} Q_{\bullet}^{T} B Q_{\bullet}} + 5A Q_{\bullet}^{T} B^{4} Q_{\bullet} + B^{5} \right)$$

$$(1)$$

< A > <

Suppose you have the first four moments

Ramis Movassagh QIP 2011 arXiv: 1012.5039 [quant-ph]

< /i>

< ∃⇒

L > 2

Figure: Wisharts

Ramis Movassagh QIP 2011 arXiv: 1012.5039 [quant-ph]

< ロ > < 同 > < 回 > < 回 >

æ