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We propose a method which we call �Isotropic Entanglement� (IE), that takes inspiration

from Free Probability Theory and other ideas in Random Matrix Theory , in order to predict the

eigenvalue distribution of quantum many body systems (QMBS) with generic interactions. At the

heart of this method is a sliding scale (�the Slider�) which matches fourth moments. We provide

examples that show IE provides an accurate picture of the spectra well beyond what one expects

from the �rst four moments alone.

QMBS spectra have been elusive for two reasons: 1. Standard numerical diagonalization is

intractable, for even a moderate number of particles, because of exponential growth. 2. The terms

that represent the interactions are generally non-commuting. This is particularly pronounced for

systems with random interactions (e.g., Quantum Spin Glasses). Indeed, the interaction is the very

source of quantum entanglement, which makes the study of strongly correlated system in condensed

matter physics a formidable task.

The applicability may not be restricted to one dimensional chains, but for the sake of concrete-

ness, we investigate N interacting d-dimensional quantum spins (qudits) on a 1−dimensional lattice
with generic nearest neighbors interaction. Mathematically the Hamiltonian can be written

H =
N−1∑
l=1

Idl−1 ⊗Hl,l+1 ⊗ IdN−l−1 , (1)

where the local terms Hl,l+1 are known random matrices.

A naive way of approximating the eigenvalues of H is to treat it classically : form all possible

sums of eigenvalues from each summand. This gives the exact answer only when the summands in

(1) commute. The eigenvalue distribution of any commuting subset of H such as odds (or even) can

be obtained classically by forming a Cartesian sum of the eigenvalues of the summands giving the

random matrices A (or B) or equivalently taking a classical convolution of the densities of the local

terms. However, the di�culty in approximating the full spectrum of H is in summing the odds and

the evens because of their overlap at every site.

The intuition behind this method is that terms with overlap, such as Hl,l+1 and Hl+1,l+2,

introduce randomness and mixing through sharing of the sites. In other words, the process of

entanglement generation introduces an isotropicity between the eigenvectors of evens and odds.

The random distribution of the local terms and the overlaps of even and odd terms at every site

introduce a sort of genericity that we wanted to harness.
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One has several options in approximating the distribution of the sum (i.e., the spectrum of H).

One extreme is to add them classically (p = 1), by which one fully ignores the non-commutativity of
neighboring terms. This implies that A and B can be diagonalized by the same set of eigenvectors.

The other extreme is to add them isotropically (p = 0), by which one assumes that the matrices A

and B are isotropic (or free in the case of in�nite matrices). In this case the eigenvectors of A and

B are in generic positions with respect to one another,

Hc = A+B Hiso = A+QTBQ H = A+QT
q BQq

where, Q is a Haar measure orthogonal matrix of size dN , Qq =
(
Q

(A)
q

)T
Q

(B)
q , where due to their

overlap Q
(A)
q and Q

(B)
q cause entanglement in the chain and A and B are assumed with no loss of

generality to be diagonal. Mathematically

Q
(A)
q =

[
⊗(N−1)/2

i=1 Q
(O)
i

]
⊗ Id and Q

(B)
q = Id ⊗

[
⊗(N−1)/2

i=1 Q
(E)
i

]
N odd

Q
(A)
q =

[
⊗N/2

i=1Q
(O)
i

]
and Q

(B)
q = Id ⊗

[
⊗N/2−1

i=1 Q
(E)
i

]
⊗ Id N even,

where each Q
(•)
i is a Haar measure orthogonal matrix of size d2 and Id is an identity matrix of size

d. The tensor product in the last equations succinctly summarizes the departure of the quantum

case from a generic matrix as well as from the classical case. First of all the number of parameters

in Qq grows linearly with N whereas it grows exponentially with N for Q. Second, the quantum

case yields isotropicity that makes it very di�erent from the classical case, whose eigenvectors

represent a point on the orthogonal group (i.e., the identity matrix). Lastly we can replace Haar

measure on the orthogonals with Haar measure on the unitaries so that the complex case is

covered by the same theory.

Neither of the two extremes give a satisfactory approximation of the spectrum of the actual

problem (Eq. 1). However, a convex combination of the two gives a very good approximation.

Existing tools of Random Matrix Theory (RMT) often rely on eigenvectors with Haar measure, the

uniform measure on the orthogonal/unitary group. However, the eigenvectors of QMBS have a more

special structure that is characteristically di�erent from RMT and the classical treatment. Therefore

we created a hybrid theory, that is in between, where the entanglement generating summands in (1)

are treated, say, with a �nite version of Free Probability Theory (FPT). As a prelude see Figure 1

that compares the IE method with exact diagonalization. The Slider displays the proposed mixture.

We will show that the classical, isotropic and the desired quantum problems depart in their

fourth moments (The Departure Theorem). We then calculate the fourth moments of the three

cases and prove that the quantum problem lies in between the two (The Slider Theorem.) The
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method of isotropic entanglement provides the parameter 0 ≤ p ≤ 1, which indicates the mixture

of classical and isotropic treatment by matching the fourth moments. Luckily and interestingly the

kurtosis of the quantum case lies in between the classical and the free. Therefore, we want to use

the knowledge of the kurtosis of the quantum case (γq
2) in terms of the kurtoses of the classical

(γc
2) and the isotropic (γiso

2 ) to form the correct hybrid theory, whereby we need to optimize the

parameter 0 ≤ p ≤ 1 such that

γq
2 = pγc

2 + (1− p) γiso
2 ⇒ p =

γq
2 − γiso

2

γc
2 − γiso

2

. (2)

This can be evaluated from the fourth moments:

m
(c)
4 =

1
dN

ETr (A+B)4 , m
(iso)
4 =

1
dN

ETr
(
A+QTBQ

)4
m

(q)
4 =

1
dN

ETr
(
A+QT

q BQq

)4
(3)

The conclusion arrived at here is another example of the principle that a small subset of the

underlying space su�ces in capturing the essentials for most problems encountered in studying

QMBS. This realization, arrived at via a di�erent route, is at the heart of the recent developments

in QMBS research such as Matrix Product States, Density Matrix Renormalization Group, where

the state (usually the ground state of 1D chains) can be adequately represented by a Matrix Product

State (MPS) ansatz whose parameters grow linearly with the number of quantum particles.
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Fig. 1.� Prelude: The normalized histogram of the eigenvalues for two chains with lengths N

and Wishart matrices of di�erent ranks r as local terms. I.E. makes a convex combination of the

isotropic (p = 0) and classical (p = 1) to capture the quantum spectrum.


