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Abstract

We consider one-round games between a classical verifier and two provers. One of the main
questions in this area is the parallel repetition question: Is there a way to decrease the maximum
winning probability of a game without increasing the number of rounds or the number of provers?
Classically, this question, open for many years, has culminated in Raz’s celebrated parallel repetition
theorem on one hand, and in efficient product testers for PCPs on the other.

In the case where provers share entanglement, the only previously known results are for special
cases of games, and are based on techniques that seem inherently limited. Here we show for the
first time that the maximum success probability of entangled games can be reduced through parallel
repetition, provided it was not initially 1. Our proof is inspired by a seminal result of Feige and Kil-
ian in the context of classical two-prover one-round interactive proofs. One of the main components
in our proof is an orthogonalization lemma for operators, which might be of independent interest.

Two-prover games play a major role both in theoretical computer science, where they led to many
breakthroughs such as the discovery of tight inapproximability results, and in quantum physics, where
they first arose in the context of Bell inequalities. In such games, a referee chooses a pair of questions
from some distribution and sends one question to each of two non-communicating players, who then
respond with answers taken from a finite set. The referee, based on the questions and answers, decides
whether to accept (i.e., whether the players win). The main question of interest is the following: given a
game, what is the player’s maximum winning probability? Somewhat surprisingly, the answer to this
depends on whether the players behave classically, or are allowed to use quantum mechanics. In the
former case, the players’ answers are simply deterministic functions of their inputs1, and the maximum
probability of winning is known as the (classical) value of the game. In the latter case the players, though
still not allowed to communicate, may share an arbitrary entangled state. The maximum winning
probability in this case is known as the entangled value of the game.

The parallel repetition question. One of the most important and interesting questions in this con-
text is that of parallel repetition. While it is well known that the (entangled) value of a game can
be decreased by repeating it either sequentially or in parallel with several independent pairs of play-
ers, for many applications (like hardness of approximation results or amplifications preserving zero-
knowledge) one needs a way to decrease the winning probability without increasing the number of
rounds or the number of players. Parallel repetition is designed to do just that: in its most basic form,
the referee simply chooses ` pairs of questions independently and sends to each player his correspond-
ing `-tuple of questions. Each player then replies with an `-tuple of answers, which are accepted if and
only if each of the ` answer pairs would have been accepted in the original game. Clearly the value of
an `-parallel repeated game is at least the `-th power of the value of the original game, however it is
known that parallel repetition does not necessarily decrease the value of a game in a straightforward
exponential manner2. The challenge of the parallel repetition question is that of showing upper bounds
on the value of a repeated game, and for a long time no such upper bound, even very weak, could be
proved for classical games. Initial results date to Verbitsky [Ver94], who showed that indeed the value
goes to zero with the number of repetitions, and Feige and Kilian [FK00], who showed that it decreases
polynomially with the number of repetitions for the special case of projection games3. They used a mod-

∗See the full paper at arXiv:1012.4728.
1One can allow the players to use randomness, but this does not change their maximum winning probability.
2See [Fei91] for a classical example, and [CSUU08] for an example using entangled players due to Watrous.
3A projection game is one in which the second player’s answer is uniquely determined by the first player’s. Projection

games form a wide class of games that captures most of the games one typically encounters in the classical literature
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ified parallel repetition procedure in which a large fraction of the repetitions are made of dummy ques-
tions, that is, questions which are chosen independently at random independently for both players,
and to which any answer is accepted. In this paper we deviate somewhat from the common terminol-
ogy, and use the term “parallel repetition” even when referring to such more general procedures. Fi-
nally, in a breakthrough result, Raz [Raz98] showed that the value of a game repeated in parallel indeed
decreases exponentially with the number of repetitions. There is still very active research in the area,
mostly on simplifying the analysis, which, over a decade later, remains quite involved, and improving
it for certain special cases of games [Hol07, Rao08, FKO07, Raz08, BHH+08, BRR+09, AKK+08, RR10].

Previous work. In this paper we focus on parallel repetition of games with entangled players. The only
two previous results in this area are for two special classes of games. First, Cleve et al. showed that
for the class of XOR games4, perfect parallel repetition holds [CSUU08]. Second, Kempe et al. show that
parallel repetition (albeit not perfect) also holds for the more general (but still quite restricted) class
of unique games5 [KRT08]. It is important to note that in all these results, the entangled value of the
parallel repeated game is never analyzed directly; instead, one uses a “proxy” such as a semidefinite
program [CSUU08, KRT08] or the no-signaling value [Hol07], whose behavior under parallel repetition
is well understood. Moreover, in all these cases, the proxy’s value is efficiently computable. This
unfortunately gives a very strong indication that such techniques cannot be extended to deal with
general games.6 This raises the following question: Can parallel repetition decrease the entangled value of
games? If so, can we bound the rate of decrease?

In parallel to the work on parallel repetition theorems, the related question of product testing arose
in the context of error amplification for PCPs [DR06, DG08, IJKW08, IKW09]. Roughly speaking, the
question here is to design tests by which a referee can check that the players play according to a product
strategy, i.e., answer each question independently of the other questions — which would in particular
imply that their maximum winning probability must necessarily go down exponentially. The result of
[FK00] mentioned above in fact also shows that the strategy of the players must have some product
structure, and recently there has been lots of interest in this question [DM10]. In the case of entangled
players, however, absolutely nothing was known. We ask: is there a way to test if the strategy of entangled
players is in some sense close to a product strategy?

Our results

In this work we answer these questions affirmatively and show that the value of entangled games can
be decreased through parallel repetition, albeit at a rate polynomial in the inverse of the target value.

Theorem 1 (informal). For any s < 1, δ > 0, and game G, there is a corresponding `-parallel repeated game
G′, where ` = poly((1− s)−1, δ−1), such that if the value of G is less than s then the value of G′ is at most δ,
whereas if the value of G is 1 then this is also true7 for the repeated game.

In the course of our proof of the theorem we also establish that the prover’s strategies have a
certain (weak) “serial” or “product” structure (see proof ideas and techniques below). We emphasize
that, even though the repeated game obtained through this theorem is not the direct parallel repetition
of G, it comes pretty close, and we describe it more precisely below. We also elaborate on the precise
conditions under which the existence of a perfect strategy for G implies the same for G′. The kind of
parallel repetition we perform depends on the structure of the game G:

Repetition for projection games. If G is a projection game, then the repeated game is obtained
by independently playing G on a subset of the repetitions, and playing dummy rounds in the other

4XOR games are games with binary answers in which the referee’s decision is based solely on the XOR of the two answers.
5Unique games are ones in which the the referee applies some permutation to the answers of the second player and

accepts if and only they match those from the first player.
6Indeed, it is known that it is NP-hard to tell if the entangled value of a given game is 1 or not [KKM+08, IKM09];

hence, unless P=NP, for any efficiently computable upper bound on the entangled value, there are necessarily games whose
entangled value is strictly less than 1 yet for which that upper bound is 1.

7See the discussion following the theorem for some caveats.
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repetitions. If, in addition, the game happens to be a free game (i.e., a game in which the referee’s
distribution on question pairs is a product distribution), then the dummy questions are no longer
needed and hence our analysis applies to the standard `-fold repetition.

Repetition for general games. If the game G does not have the projection property, then it is
necessary to add a number of consistency rounds to the repetition. In those rounds the referee sends
identical questions to the players, and expects identical answers. As before, the other rounds of the
repetition are either the game G or dummy rounds. The consistency questions are added to play the
role of the projection constraints. However, since it is not obvious that honest entangled players can
answer the consistency questions correctly, even if G had value 1 it is not guaranteed that G′ has value
1 anymore. This may or may not be an issue depending on where the original game comes from. In
many cases it is known that, if there is a perfect strategy, it does not require any entanglement at all, or
maybe it can be achieved using the maximally entangled state. In both cases it is not hard to see that
players will be able to answer consistency questions perfectly, and hence our result holds.

Proof idea and techniques. We focus on the case of projection games, as the proof of the other
cases does not present additional challenges. The starting point of our proof is the work of Feige and
Kilian [FK00], for which the following intuition can be given. Our goal as the referee is to force the
players to use a product strategy: we want to make sure that the player chooses his answer to the ith
question based only on that question and not on any of the other `− 1 questions. Towards this end,
the referee chooses a (typically large) fraction of the ` question pairs to be independently distributed
dummy questions, the answers to which are ignored. These dummy questions are meant to confuse the
players: if they were indeed trying to carefully choose their answer to a certain question by looking at
many other questions, now most of those will be completely random and uncorrelated with the other
player’s questions, so that such a strategy cannot possibly be helpful. In more detail, Feige and Kilian
prove the following dichotomy theorem on the structure of single-player repeated strategies: either
the strategy looks rather random (in which case the players cannot win the game with good probability
— this is where the projection property is used) or it is almost a serial or product strategy (i.e. the player
is playing the rounds independently, and his success probability will suffer accordingly).

Our proof follows a similar structure. However, an important challenge immediately surfaces: the
proof in [FK00], and indeed all proofs of parallel repetition theorems or direct product tests, make
the important initial step of assuming that the player’s strategies are deterministic. And indeed, it
is not at all trivial to extend those proofs to even the randomized setting without making this initial
simplifying assumption. To give a simple example, an important notion in Feige and Kilian’s proof is
that of a dead question — simply put, a question to which the player does not give any majority answer,
when one goes over all possible ways of completing that specific question into a tuple of questions for
the repeated game. It is easily seen that, in the case of a deterministic strategy, dead questions are
harmful, as the players are unlikely to satisfy the projection property on them. However, it is just as
easily seen that for most randomized strategies, good or bad, all questions are dead.

This illustrates the kinds of difficulties that one encounters while trying to show parallel repetition
in the case of entangled players, when one cannot simply “fix the randomness”. The issue we just
raised is not too hard to solve, but others are more challenging. Indeed the main difficulty is to define
a proper notion of almost serial for operators, which would in particular incorporate the inherent ran-
domness of quantum strategies. It turns our that the right notion is that of consecutive measurements
(rather than tensor products of independent measurements, a tempting but excessively strong possi-
bility). Based on a quantum analogue of Feige and Kilian’s dichotomy theorem, we are able to show
that the almost serial condition induces a condition of almost orthogonality on the player’s operators. At
this point we need to prove a genuinely quantum lemma, which lets us extract a product strategy from
the almost-orthogonal condition. This novel orthogonalization lemma is at the heart of our proof. We
obtain that the players approximately perform a series of consecutive measurements, each depending
only on the current question. An upper bound on the value of the repeated game then follows.
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