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Quantum Network Coding
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The Classical k-pair Problem
each edge has 

capacity 1
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Main Result

Suppose that a given instance of the classical k-pair problem 
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Main Result
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Main Theorem
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Then the associated quantum instance has a perfect solution 
if free classical communication is allowed.

edges: quantum channels 
of unit capacity

edges: classical channels 
of unit capacity

+ free classical 
communication

Quantum Protocol



Relation with our Previous Work

 This result improves and generalizes our previous work 
[KLNR 2009]

Note: there exist solvable classical k-pair problems for which no linear
protocol exists [Dougherty, Freiling and Zeger 2005] [Riis 2003]

[KLNR’09] This talk

number of bits of free classical 
communication sent per edge

polynomial ≤ 2

condition on the classical protocol linear protocol none

arXiv:0908.1457 and ICALP’09
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Quantum Protocol

classical coding scheme quantum simulation

I. node-by-node simulation

Three steps:

II. removal of internal 
registers

III. removal of initial 
registers
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: 1 bit

idea: phases can always be corrected at the  
previous node 

S1 :
R1 :
R2 :

R6 :
R7 :
T1 :
T2 :

S2 :
R3 :
R4 :
R5 :

|x�
|x�
|x�
|y�
|y�
|y�

|x�
|y�

|x⊕ y�
|x⊕ y�
|x⊕ y�

b

c gd

e f

H b

Zb H c

Zc

Zc

H e
H d

Zd Ze

H f
H g

Z 
f Zg

II. removal of internal registers

R5 was created using 
R2 and R3 



III. removal of initial registers

current state:

ideal state:
�

x,y∈{0,1}

αxy|x�T1 |y�T2

�

x,y∈{0,1}

αxy|x�S1 |y�S2 |x�T1 |y�T2

s1

t1t2

s2

S1

T1T2

S2

a b

c gd

e f

S1 :
S2 :
T1 :
T2 :

|x�
|y�

|x�
|y�



III. removal of initial registers
exception: phases are corrected at the target nodes

current state:

ideal state:
�

x,y∈{0,1}

αxy|x�T1 |y�T2

�

x,y∈{0,1}

αxy|x�S1 |y�S2 |x�T1 |y�T2

s1
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S1
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a b

c gd

e f
k h
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Zh



III. removal of initial registers
exception: phases are corrected at the target nodes

current state:

ideal state:
�

x,y∈{0,1}

αxy|x�T1 |y�T2

�

x,y∈{0,1}

αxy|x�S1 |y�S2 |x�T1 |y�T2

s1

t1t2

s2

S1

T1T2

S2

a b

c gd

e f
k h

S1 :
S2 :
T1 :
T2 :

|x�
|y�
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H h

Zk
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III. removal of initial registers
exception: phases are corrected at the target nodes

s1

t1t2

s2

S1

T1
T2

S2

a b

c gd

e f

h k

kh

h⊕k

h⊕kh⊕k

equivalently:

: 1 qubit (original direction)
: 1 bit (reverse direction)
: 1 bit (original direction)

one qubit + two bits sent per edge 

s1

t1t2

s2

S1

T1T2

S2

a b

c gd

e f
k h



Main Theorem (again)

one qubit + two bits sent per edge 

Suppose that a given instance of the classical k-pair problem 
has a solution. 

Main Theorem

Then the associated quantum instance has a perfect solution 
if free classical communication is allowed.



General Quantum Protocol

classical coding scheme quantum simulation

I. node-by-node simulation

Three steps:

II. removal of internal 
registers

III. removal of initial 
registers

. . . . . . . . . . .s1 sk

t1 tk

x1

x1 xk

. . . . . . . . . . .

xk



Conclusions

n Without additional resources, perfect quantum network 
coding is impossible in general 

n With free classical communication, perfect quantum coding 
is possible whenever classical coding is feasible

• this works even for nonlinear classical schemes

• at most two bits of classical communication are sent per edge

n Our proof is constructive: efficient construction of a 
quantum perfect transmission protocol from any classical 
coding scheme


