## Quantum Interactive Proofs with Weak Error Bounds

Tsuyoshi Ito

Institute for Quantum Computing & School of Computer Science University of Waterloo

Joint work with Hirotada Kobayashi (National Institute of Informatics) John Watrous (IQC & SCS, University of Waterloo)

### A motivation for main result

QIP = PSPACE [Jain, Ji, Upadhyay, Watrous STOC'10]

A motivation for main result

QIP ⊆ PSPACE [Jain, Ji, Upadhyay, Watrous STOC'10]

Proof requires the assumption of bounded error

 $IP \subseteq PSPACE [Feldman'86]$  This assumption is necessary (unless PSPACE = EXP)

Holds even without error bounds

Why are these results so different?

Main result: QIP with suitable weaker error bounds = EXP

Also: IP  $\neq$  QIP without error bounds (unless PSPACE = EXP)

## Outline

- Classical and quantum interactive proofs
- IP  $\subseteq$  PSPACE vs. QIP  $\subseteq$  PSPACE
- Main result: QIP with  $2^{-2^{\text{poly}}}$  gap = EXP
- Proof technique: No-signaling 2-prover 1-round interactive proofs
- Other results
- Open problems

#### Interactive proofs [Babai '85] [Goldwasser, Micali, Rackoff '85]

Verifier (Randomized poly-time) Prover (Computationally unbounded)





Accept (convinced) Reject (unconvinced) Tries to make V accept with as high prob. as possible

V has to decide whether prover is honest or not (with small error probability)

#### Interactive proofs <sup>[Babai '85]</sup> [Goldwasser, Micali, Rackoff '85]

Verifier's job:

- Completeness:  $x \in L \Rightarrow \exists P. V$  accepts with prob.  $\geq a(|x|)$
- Soundness:  $x \notin L \Rightarrow \forall P$ . V accepts with prob.  $\leq b(|x|)$ System has *bounded error* when  $a(n) - b(n) \geq 1/\text{poly}$

IP: Class of languages *L* having a bounded-error IP system

IP = PSPACE

[Lund, Fortnow, Karloff, Nisan FOCS'90; Shamir FOCS'90]

#### Interactive proofs <sup>[Babai '85]</sup> [Goldwasser, Micali, Rackoff '85]

Verifier (Randomized poly-time) Prover (Computationally unbounded)



Accept (convinced) Reject (unconvinced)

## IP: Class of languages *L* having a bounded-error IP system



## Quantum interactive proofs

Very different from classical IP in some senses:

- Parallelizable to 3 messages [Kitaev, Watrous STOC'00]
- Verifier only has to send one bit which is coin flip [Marriott, Watrous CCC'04]



## Quantum interactive proofs

Very different from classical IP in some senses:

- Parallelizable to 3 messages [Kitaev, Watrous STOC'00]
- Verifier only has to send one bit which is coin flip [Marriott, Watrous CCC'04]



## Quantum interactive proofs

Very different from classical IP in some senses:

- Parallelizable to 3 messages [Kitaev, Watrous STOC'00]
- Verifier only has to send one bit which is coin flip [Marriott, Watrous CCC'04]



Power of quantum interactive proofs

### $PSPACE \subseteq IP \subseteq QIP \subseteq EXP$

[LFKN][Shamir] Trivial Semidefinite programming formulation [Kitaev, Watrous STOC'00]

[Jain, Ji, Upadhyay, Watrous STOC'10]:

### QIP = PSPACE

Approximates the optimal prover by a fast parallel algorithm; heavily depends on *bounded-error* assumption

IP  $\subseteq$  PSPACE is easy: enumerate all possible responses for provers in poly-space and choose the best one

Main result

QIP with  $2^{-2^{\text{poly}}}$  gap = EXP (with a standard gate set: Toffoli, Hadamard,  $\pi/2$ -phase shift)

Consequences: Several new differences between classical and quantum interactive proofs

- IP ≠ QIP in the unbounded-error setting\*
- Bounded-error assumption in [JJUW10] is necessary\*
- QIP systems can have 2<sup>-2<sup>poly</sup></sup> gap, unlike IP systems

#### \* Unless PSPACE = EXP

## Easy direction: QIP with $2^{-2^{poly}}$ gap $\subseteq$ EXP

Immediate from a direct formulation of QIP systems by semidefinite programs [Gutoski, Watrous STOC'07]

QIP system

- $\rightarrow$  Semidefinite program of exponential size
- $\rightarrow$  Solve it to double-exp precision by standard algorithms for SDP

(This only uses a very special case of [GW07]: [GW07] implies quantum refereed games with  $2^{-2^{\text{poly}}}$  gap are still  $\subseteq$  EXP)

## Proof outline: QIP with $2^{-2^{poly}}$ gap $\supseteq$ EXP

- Construct a no-signaling 2-prover 1-round interactive proof system with 2<sup>-2<sup>poly</sup></sup> gap for an EXP-complete problem
- 2. Convert it to a QIP system without ruining the gap

No-signaling box

[Khalfin and Tsirelson '85] [Rastall '85]



Prob. dist.  $p(a_1, a_2|q_1, q_2)$ satisfying *no-signaling conditions*:

- Marginal distribution of  $a_1$  only depends on  $q_1$  $p_1(a_1|q_1) = \sum_{a_2} p(a_1, a_2|q_1, q_2)$
- Marginal distribution of  $a_2$  only depends on  $q_2$

$$p_2(a_2|q_2) = \sum_{a_1} p(a_1, a_2|q_1, q_2)$$



## EXP-complete problem: Succinct Circuit Value (SCV)

Given: Exponentially large Boolean circuit (suitably encoded) consisting of Const-0, Const-1, 2-input AND, 2-input OR and NOT gates, and a gate *g* in it

Question: Does the gate *g* output the value 1?



- Pick 2 gates *s*, *t* independently at random
- Ask Alice all the input values of gate *s*, and ask Bob the output value of gate *t*
- Reject if anything is wrong:
  - *s*=*t* ⇒ answers must be consistent with the gate type
  - *t* is an input of *s* ⇒ corresponding answers must coincide
  - $t=g \Rightarrow$  Bob's answer must be 1



- Pick 2 gates *s*, *t* independently at random
- Ask Alice all the input values of gate *s*, and ask Bob the output value of gate *t*
- Reject if anything is wrong:
  - *s*=*t* ⇒ answers must be consistent with the gate type
  - *t* is an input of *s* ⇒ corresponding answers must coincide
  - $t=g \Rightarrow$  Bob's answer must be 1



- Pick 2 gates *s*, *t* independently at random
- Ask Alice all the input values of gate *s*, and ask Bob the output value of gate *t*
- Reject if anything is wrong:
  - *s*=*t* ⇒ answers must be consistent with the gate type
  - *t* is an input of *s* ⇒ corresponding answers must coincide
  - $t=g \Rightarrow$  Bob's answer must be 1



- Pick 2 gates *s*, *t* independently at random
- Ask Alice all the input values of gate *s*, and ask Bob the output value of gate *t*
- Reject if anything is wrong:
  - *s*=*t* ⇒ answers must be consistent with the gate type
  - *t* is an input of *s* ⇒ corresponding answers must coincide
  - $t=g \Rightarrow$  Bob's answer must be 1



## Properties

- Perfect completeness
- Verifier almost always accepts without checking anything
   → Soundness error can be as bad as

   1 4/N = 1 2<sup>-poly</sup>
   (N = the number of gates)
   even without allowing no-signaling boxes
- Even worse with no-signaling boxes: Soundness error can be  $1 - 2^{-(N-1)/2} = 1 - 2^{-2^{\text{poly}}}$
- Soundness error is ≤ 1 2<sup>-2<sup>poly</sup></sup> even with no-signaling boxes (by simple proof using induction)

 $\mathbf{V}$ 

# No-signaling 2-prover 1-round system to QIP system

- Generate *s*, *t* as max-ent states:  $\sum_{s} |s\rangle_{s'} \otimes \sum_{t} |t\rangle_{T'} |t\rangle_{T'}$
- Send both *S* and *T* to the prover, and receive *S*, *T* and corresponding answers *A*, *B*:

$$\sum_{s} \frac{|s\rangle_{s}|s\rangle_{s'}|a(s)\rangle_{A}}{|s\rangle_{s}|s\rangle_{s'}} \otimes \sum_{t} |t\rangle_{T}|t\rangle_{T'}|b(t)\rangle_{B}$$

- Randomly perform one of the following tests:
  - 1. Measure *S*′, *T*′, *A*, *B* and check the answers are consistent
  - 2. Send *S* and *A*, receive *S*, and check *S* and *S*' are max-ent
  - 3. Send *T* and *B*, receive *T*, and check *T* and *T*' are max-ent

## Properties

- Perfect completeness
- Soundness error  $\geq 1 2^{-2^{\text{poly}}}$
- Soundness error  $\leq 1 2^{-2^{\text{poly}}}$ :
  - Verifier's test ensures prover acts according to some "approximately no-signaling" strategy in 2-prover protocol
  - Soundness of 2-prover protocol ensures if  $x \notin L$ , no-signaling strategies cannot make verifier accept well
  - [Holenstein'09] "Approximately no-signaling" strategies cannot outperform no-signaling strategies by much

### Other results

- QIP(2) (= 2-message QIP) with 2<sup>-poly</sup> gap ⊇ PSPACE (easy consequence of [Wehner ICALP'06])
- Upper bounds on some classes with sharp threshold
  - QIP with no gap ⊆ EXPSPACE (use [GW07] and PSPACE algorithm for exact semidefinite feasibility problem [Canny STOC'88])

QMA<sub>1</sub> (= 1-message QIP with perfect completeness) with no gap ⊆ PSPACE
 (use [MW04] and a parallel algorithm for linear dependence [Csanky '76])

## Open problems

- PSPACE ⊆ QIP with 2<sup>-poly</sup> gap ⊆ EXP
   Can we reduce the error of multiplicative weights update?
- EXP ⊆ QIP without gap ⊆ EXPSPACE
   Does semidefinite feasibility have a QIP protocol without gap? How small can be the gap of QIP protocols?
- PSPACE  $\subseteq$  QIP(2) without gap  $\subseteq$  EXPSPACE

Answering these hopefully leads to new paradigms for protocol construction / simulation