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Abstract

We prove that the computational power of quantum interactive proof systems with a double-exponentially
small gap in acceptance probability between the completeness case and the soundness case is precisely char-
acterized by EXP, the class of problems solvable in exponential time by deterministic Turing machines. This
fact, and our proof of it, has implications concerning quantum and classical interactive proof systems in the
setting of unbounded error that include the following:

• Quantum interactive proof systems are strictly more powerful than their classical counterparts in the
unbounded-error setting unless PSPACE = EXP, as even unbounded error classical interactive proof
systems can be simulated in PSPACE.

• The recent proof of Jain, Ji, Upadhyay and Watrous (STOC 2010) establishing QIP = PSPACE relies
heavily on the fact that the quantum interactive proof systems defining the class QIP have bounded
error. Our result implies that some nontrivial assumption on the error bounds for quantum interactive
proofs is unavoidable to establish this result (unless PSPACE = EXP).

• To prove our result we give a quantum interactive proof system for EXP with perfect completeness and
soundness error 1 − 2−2poly , for which the soundness error bound is provably tight. This establishes
another respect in which quantum and classical interactive proof systems differ, because such a bound
cannot hold for any classical interactive proof system: distinct acceptance probabilities for classical
interactive proof systems must be separated by a gap that is at least (single-)exponentially small.

We also study the computational power of a few other related unbounded-error complexity classes.

Interactive proof systems [Bab85, GMR89] are a central notion in complexity theory. It is well-known that
IP, the class of problems having single-prover classical interactive proof systems with polynomially-bounded
verifiers, coincides with PSPACE [Fel86, LFKN92, Sha92], and it was recently proved that the same character-
ization holds when the prover and verifier have quantum computers [JJUW10]. More succinctly, it holds that

IP = PSPACE = QIP. (1)

The two equalities in (1) are, in some sense, intertwined: it is only through the trivial relationship IP ⊆ QIP,
together with the landmark result PSPACE ⊆ IP, that we know PSPACE ⊆ QIP. While there exist clas-
sical refinements [She92, Mei10] of the original method of Lund, Fortnow, Karloff and Nisan [LFKN92] and
Shamir [Sha92] used to prove PSPACE ⊆ IP, there is no “short-cut” known that proves PSPACE ⊆ QIP
through the use of quantum computation.
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The opposite containments required to prove the two equalities in the above equation (1) are IP ⊆ PSPACE
and QIP ⊆ PSPACE, respectively. The first containment is usually attributed to Feldman [Fel86], and can fairly
be described as being straightforward to prove. The standard proof, in fact, gives a polynomial-space algorithm
that computes the optimal acceptance probability for a prover in a classical interactive proof system exactly, with
this optimal probability expressible as some integer divided by 2k, where k is the maximum number of coin-flips
used by the verifier. The proof of the containment QIP ⊆ PSPACE given in [JJUW10], on the other hand, is
much more complicated: it uses known properties of QIP [KW00, MW05] to derive a semidefinite programming
formulation of it, which is then approximated in PSPACE through the use of an algorithm based on the matrix
multiplicative weights update method [AK07, WK06]. Unlike the standard proof of IP ⊆ PSPACE, this proof
relies heavily on the bounded-error property of the quantum interactive proof systems that define QIP.

There must, of course, be alternate ways to prove QIP ⊆ PSPACE, and we note that Wu [Wu10] and
Gutoski and Wu [GW10] have made noteworthy advances in both simplifying and extending the proof method
of [JJUW10]. The main question that motivates the work we present here is whether the assumption of bounded-
error is required to prove QIP ⊆ PSPACE, or could be bypassed. Our results demonstrate that indeed some
assumption on the gap between completeness and soundness probabilities must be in place to prove QIP ⊆
PSPACE unless PSPACE = EXP.

To explain our results in greater detail it will be helpful to introduce the following notation. Given any choice
of functions m : N → N and a, b : N → [0, 1], where we take N = {0, 1, 2, . . .}, we write QIP(m, a, b)
to denote the class of promise problems A = (Ayes, Ano) having a quantum interactive proof system1 with
m(|x|) messages, completeness probability at least a(|x|) and soundness error at most b(|x|) on all input strings
x ∈ Ayes ∪ Ano. When sets of functions are taken in place of m, a or b, it is to be understood that a union is
implied. For example,

QIP(poly , 1, 1− 2−poly) =
⋃

m,p∈poly
QIP

(
m, 1, 1− 2−p

)
,

where poly denotes the set of all functions of the form p : N→ N for which there exists a polynomial-time deter-
ministic Turing machine that outputs 1p(n) on input 1n for all n ∈ N. We will also frequently refer to functions
of the form f : N → [0, 1] that are polynomial-time computable, and by this it is meant that a polynomial-time
deterministic Turing machine exists that, on input 1n, outputs a rational number f(n) in the range [0, 1], repre-
sented by a ratio of integers expressed in binary notation. Our main result may now be stated more precisely as
follows.

Theorem 1. It holds that⋃
a

QIP
(
poly , a, a− 2−2

poly
)
= QIP

(
3, 1, 1− 2−2

poly
)
= EXP,

where the union is taken over all polynomial-time computable functions a : N→ (0, 1].

Actually the only new relation in the statement of Theorem 1 is

EXP ⊆ QIP
(
poly , 1, 1− 2−2

poly
)
; (2)

we have expressed the theorem in the above form only for the sake of clarity. In particular, the containment

QIP
(
poly , 1, 1− 2−2

poly
)
⊆ QIP

(
3, 1, 1− 2−2

poly
)

1The definitions of quantum computational models based on quantum circuits, including quantum interactive proof systems, is par-
ticularly sensitive to the choice of a gate set in the unbounded error setting. For our main result we take the standard Toffoli, Hadamard,
π/2-phase-shift gate set, but relax this choice for a couple of our secondary results.
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follows from the fact that

QIP(m, 1, 1− ε) ⊆ QIP

(
3, 1, 1− ε

(m− 1)2

)
for all m ∈ poly and any function ε : N → [0, 1], as was proved in [KKMV09] (or an earlier result of [KW00]
with a slightly weaker parameter). The containment

QIP
(
3, 1, 1− 2−2

poly
)
⊆
⋃
a

QIP
(
poly , a, a− 2−2

poly
)

is trivial. The containment ⋃
a

QIP
(
poly , a, a− 2−2

poly
)
⊆ EXP

follows from the results of Gutoski and Watrous [GW07], as a semidefinite program representing the optimal
acceptance probability of a given quantum interactive proof system2 can be solved to an exponential number of
bits of accuracy using an exponential-time algorithm [Kha79, GLS88, NN94].

The new containment (2), which represents the main contribution of this work, is proved in two steps.
The first step constructs a classical two-prover one-round interactive proof system with one-sided error double-
exponentially close to 1 for the EXP-complete SUCCINCT CIRCUIT VALUE problem. It will be proved that in
this proof system, provers cannot make the verifier accept no-input strings with probability more than double-
exponentially close to 1 even if they are allowed to use a no-signaling strategy, i.e., a strategy that cannot be used
for communication between them. The second step converts this classical two-prover one-round interactive proof
system to a quantum single-prover interactive proof system without ruining its soundness properties.

Theorem 1 and its proof have the following three consequences.

• Unbounded-error classical interactive proof systems recognize exactly PSPACE. Therefore, Theorem 1
implies that unbounded-error quantum interactive proof systems are strictly more powerful than their clas-
sical counterparts unless PSPACE = EXP.

• The dependence on the error bound in the proof in [JJUW10] is not an artifact of the proof techniques,
but is a necessity unless PSPACE = EXP. To be more precise, even though a double-exponential gap
is sufficient to obtain the EXP upper bound by applying a polynomial-time algorithm for semidefinite
programming, Theorem 1 implies that a double-exponential gap is not sufficient for the PSPACE upper
bound unless PSPACE = EXP.

• Our proof of Theorem 1 shows that a quantum interactive proof system can have a completeness-soundness
gap smaller than singly exponential, which cannot happen in classical interactive proof systems. In our
quantum interactive proof system for EXP, the gap is double-exponentially small, and this is tight in the
sense that a dishonest prover can make the verifier accept with probability double-exponentially close to 1.

We do not know if the double-exponentially small gap in Theorem 1 can be improved to one that is single-
exponentially small by constructing a different proof system.

Some additional results concerning unbounded-error quantum interactive proof systems are also discussed.
2The results of Gutoski and Watrous [GW07] are actually more general and give the EXP upper bound on the corresponding class

with two competing quantum provers. In addition, only mild assumptions on the gate set are needed to obtain this containment. Namely,
the containment holds if the gate set consists of finitely many gates and the Choi-Jamiołkowski representation of each gate is a matrix
made of rational complex numbers.
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