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How do quantum computers affect the security of PKC in general?

Practical question: we'd like to be able to send confidential information
even after quantum computers are built

Theoretical question: crypto is a good setting for exploring the
potential strengths/limitations of quantum computers



Isogeny-based elliptic curve cryptography

Not all elliptic curve cryptography is known to be quantumly broken!
Couveignes 97, Rostovstev-Stolbunov 06, Stolbunov 10: Public-key

cryptosystems based on the assumption that it is hard to construct an
isogeny between given elliptic curves over I,

Best known classical algorithm: O(¢'/%) [Galbraith, Hess, Smart 02]



Isogeny-based elliptic curve cryptography

Not all elliptic curve cryptography is known to be quantumly broken!

Couveignes 97, Rostovstev-Stolbunov 06, Stolbunov 10: Public-key
cryptosystems based on the assumption that it is hard to construct an
isogeny between given elliptic curves over I,

Best known classical algorithm: O(¢'/%) [Galbraith, Hess, Smart 02]

Main result of this talk:
Quantum algorithm that constructs an isogeny in time Lq(%, \/73)
(assuming GRH), where

Lg(o, ¢) :==exp|(c+o0(1))(Ing)*(Inln Q)l_a}



Elliptic curves

Let IF be a field of characteristic different from 2 or 3

An elliptic curve E is the set of points in PF- satisfying an equation of
the form y? = 2° + ax + b

Y

Example (I = R):




Elliptic curve group

Geometric definition of a binary
operation on points of E:

P+Q

This defines an abelian group with additive identity oo



Elliptic curve group

Geometric definition of a binary Algebraic definition:
operation on points of [
for xp # z(,
)\ — Yo —Yyp
rg —Tp

Tpig =\ —xp — xQ

:  YP4+Q = >\($P — CUP+Q) —Yyp

_ (similar expressions for

other cases)
P+Q

This defines an abelian group with additive identity oo



Elliptic curves over finite fields

Cryptographic applications use a finite field [,

Example: y* = 2° + 2z + 2
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Elliptic curve isogenies

Let Lo, £ be elliptic curves

An isogeny ¢ : Eg — L is a rational map

o, ) = (fw(il%y) fy(a:,y)>

9.(z,y) " g9y(z,9)

(fz, fy> 9z, gy are polynomials) that is also a group homomorphism:

o((z,y) + (2',y")) = d(z,y) + o(2',y)




Elliptic curve isogenies

Let Lo, £ be elliptic curves

An isogeny ¢ : Eg — L is a rational map

o, ) = (fw(il%y) fy(a:,y)>

9.(z,y) " g9y(z,9)

(fz, fy> 9z, gy are polynomials) that is also a group homomorphism:

o((z,y) + (2',y")) = d(z,y) + o(2',y)

Example (IF = F1q9):

Eo: y° =a° 42z + 2 2, Ey: y? =2° + 34z + 45

o(z,y) = r3 +202% + 502 +6 (23 + 3022 + 23z + 52)y
=T 221200 +100 7 43 + 3022 + 822 + 19



Deciding isogeny

Theorem [Tate 66]:Two elliptic curves over a finite field are isogenous
if and only if they have the same number of points.

There is a polynomial-time classical algorithm that counts the points
on an elliptic curve [Schoof 85].

Thus a classical computer can decide isogeny in polynomial time.
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The endomorphism ring

The set of isogenies from E to itself (over ) is denoted End(E)

We assume E is ordmary (i.e., not su ersmgular) which is the typical
case; then End(F) = = 7| A+ | is an imaginary quadratic order
of discriminant A < O

If End(Fy) = End(FE;) then we say £y and E; are endomorphic

Let Ell, ,,(OAa ) denote the set of elliptic curves over I, with n points
and endomorphism ring O (up to isomorphism of curves)



Representing isogenies

The degree of an isogeny can be exponential (in log q)

Example: The multiplication by m map,

(xay) = (xay)++($7y)

\ J/

. . 2 m
is an isogeny of degree m

Thus we cannot even write down the rational map explicitly in
polynomial time



Representing isogenies

The degree of an isogeny can be exponential (in log q)

Example: The multiplication by m map,

(xay) = (:C,y)—|—+(:v,y)

\ J/

. . 2 m
is an isogeny of degree m

Thus we cannot even write down the rational map explicitly in
polynomial time

Fact: lIsogenies between endomorphic elliptic curves can be
represented by elements of a finite abelian group, the ideal class group
of the endomorphism ring, denoted C1(Oa )



A group action

Thus we can view isogenies in terms of a group action

* Cl((’)A) X Eﬂq,n(OA) — Eﬂq,n((l)A)

where Ey is the elliptic curve reached from E by an isogeny
corresponding to the ideal class [b]



A group action

Thus we can view isogenies in terms of a group action

* CI(OA) X Eﬂq,n(OA) — Eﬂq,n((l)A)

where Ey is the elliptic curve reached from E by an isogeny
corresponding to the ideal class [b]

This action is regular [Waterhouse 69]:
for any Iy, E; there is a unique [b] such that [b] x Ey = E



The abelian hidden shift problem

Let A be a known finite abelian group
Let fy : A — R be an injective function (for some finite set R)

Let f; : A — R be defined by f1(z) = fo(xs) for some unknown s € A

Problem: find s




The abelian hidden shift problem

Let A be a known finite abelian group
Let fy : A — R be an injective function (for some finite set R)
Let f; : A — R be defined by f1(z) = fo(xs) for some unknown s € A

Problem: find s

fo
h

For A cyclic, this is equivalent to the dihedral hidden subgroup
problem

More generally, this is equivalent to the HSP in the generalized dihedral
group A X Zo



Isogeny construction as a hidden shift problem

Define fy, f1 : C1(Oa) — Ell, ,(Oa) by

fo([b]) = [b] * Ey
f1([b]) = [b] x Fy

Ey, E; are isogenous, so there is some |s| such that [s| x Ey = F

o)) = |
o)) = |



Isogeny construction as a hidden shift problem

Define fy, f1 : C1(Oa) — Ell, ,(Oa) by

fo([b]) = [b] *x Ey
f1([b]) = [b] x Fy

Ey, E; are isogenous, so there is some |s| such that [s| x Ey = F

= |
= |

Therefore this is an instance of the hidden shift problem in C1(Ox )
with hidden shift [s]:

e Since * is regular, fj is injective
e Since * is a group action, f1([b]) = fo([b][s])



Kuperberg’s algorithm

Theorem [Kuperberg 03]: There is a quantum algorithm that solves
the abelian hidden shift problem in a group of order NN with running

time exp[O(VIn N)| = Ly (2,0).
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Kuperberg’s algorithm

Theorem [Kuperberg 03]: There is a quantum algorithm that solves
the abelian hidden shift problem in a group of order N with running

time exp[O(VIn N)| = Ly (2,0).

Thus there is a quantum algorithm to construct an isogeny with
running time 1
8 Ln(3,0) x ¢(N)

where ¢(N) is the cost of evaluating the action

But previously it was not known how to compute the action in
subexponential time
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Computing the action
Problem: Given E, A, b € Oa,compute [b] x E

Direct computation (using modular polynomials) takes time O(¢°)
for an ideal of norm /

Instead we use an indirect approach:
* Choose a factor base of small prime ideals p;,...,py
e Find a factorization [b] = [p{* - -pjcf] where e1,...,es are small
e Compute |b| x I/ one small prime at a time

By optimizing the S|ze of the factor base, this approach can be made to
work in time L(3, —) (assuming GRH)

Note: This assumes only GRH (previous related algorithms required
stronger heuristic assumptions)



Polynomial space

Kuperberg’s algorithm uses space exp|O(VIn )]

Regev 04 presented a modified algorithm using only polynomial space
for the case A = Zon, with running time

exp|O(Vnlnn)] = Lan(3,0(1))

Combining Regev’s ideas with techniques used by Kuperberg for the
case of a general abelian group (of order V), and performing a careful
analysis, we find an algorithm with running time Ly (3, V2)

Thus there is a quantum algorithm to construct e\/lu;tlc curve isogenies
using only polynomial space in time L/,
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Conclusions

Given two isogenous, endomorphic, ordinary elliptic curves over I,
there is a quantum algorithm that constructs an isogeny between them
in time L, (3, f) (or in time L,(3, V3 4 v/2) using poly(log q) space)

Consequences:

* [sogeny-based cryptography may be less secure than more
mainstream cryptosystems (e.g., lattices)

e Computing properties of algebraic curves may be a fruitful direction
for new quantum algorithms

- Can we break isogeny-based cryptography in polynomial time?
- Computing properties of a single curve (e.g., endomorphism ring)
- Generalizations: non-endomorphic curves, supersingular curves



