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Quantum computation has the potential for dramatic impact on cryptography. Shor’s algo-
rithm [16] breaks the two most widely used public-key cryptosystems, RSA encryption and elliptic
curve cryptography. Related quantum algorithms could break other classical cryptographic proto-
cols, such as Buchmann-Williams key exchange [8] and algebraically homomorphic encryption [5].
Thus there is considerable interest in understanding which classical cryptographic schemes are or
are not secure against quantum attacks, both from a practical perspective and as a potential source
of new quantum algorithms that outperform classical computation.

While it is well known that quantum computers can efficiently solve the discrete logarithm
problem in elliptic curve groups, other computations involving elliptic curves may be significantly
more difficult. In particular, Couveignes [4] and Rostovtsev and Stolbunov [15, 17] proposed public-
key cryptosystems based on the presumed difficulty of constructing an isogeny between two given
elliptic curves. Informally, an isogeny is a map between curves that preserves their algebraic
structure. Isogenies play a major role in classical computational number theory, yet as far as we
are aware they have yet to be studied from the standpoint of quantum computation.

In this work, we present a quantum algorithm for constructing an isogeny between two ordinary
elliptic curves. The isogenies from an elliptic curve E to itself form the endomorphism ring of the
curve; this ring is an imaginary quadratic order O∆ of discriminant ∆ < 0. Given two isogenous
ordinary elliptic curves E0, E1 over Fq with the same endomorphism ring O∆, we show how to
construct an isogeny φ : E0 → E1 (specified by its kernel, represented by a smooth ideal class
[b] ∈ Cl(O∆)). The output of this algorithm is sufficient to recover the private key in all proposed
isogeny-based public-key cryptosystems [4, 15, 17].

The running time of our algorithm is subexponential—specifically, assuming the Generalized

Riemann Hypothesis (GRH), it runs in time L(1
2 ,

√
3

2 ), where

L(1
2 , c) := exp

[
(c+ o(1))

√
ln q ln ln q

]
.

Although subexponential-time attacks do not necessarily render a cryptosystem useless, our re-
sult suggests that isogeny-based approaches are unlikely to be competitive with other proposed
quantum-resistant cryptosystems such as lattice-based cryptography. Furthermore, we hope that
our work leads to other quantum algorithms for computations involving elliptic curves, a direction
that appears to be a natural target for future quantum speedups.

Our algorithm works by reducing the problem of isogeny finding to the abelian hidden shift
problem. When computing isogenies, it suffices to consider curves up to isomorphism, where curves
are considered isomorphic if their defining equations are related by a change of variables. Let
Ellq,n(O∆) denote the set of isomorphism classes of elliptic curves over Fq with n points and
endomorphism ring O∆, as represented by a function called the j-invariant of a curve. There
is an action of the ideal class group Cl(O∆) on Ellq,n(O∆) defined as [b] ∗ j(E) = j(Eb), where
Eb is the elliptic curve reached from E by an isogeny corresponding to the ideal b ∈ O∆. This
action is free and transitive, which implies that the functions f0, f1 : Cl(O∆)→ Ellq,n(O∆) defined
as f0([b]) = [b] ∗ j(E0) and f1(E) = [b] ∗ j(E1) form an instance of the hidden shift problem
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in the abelian group Cl(O∆). Thus, using Kuperberg’s subexponential-time algorithm for the
abelian hidden shift problem [12], we can find [s] ∈ Cl(O∆) such that [s] ∗ j(E0) = j(E1), thereby
constructing an isogeny from E0 to E1.

While the reduction from isogeny finding to the hidden shift problem in Cl(O∆) is fairly straight-
forward, implementing this reduction in subexponential time is nontrivial. Previously, the best
known algorithm for computing the action ∗ ran in exponential time (roughly q1/4) [7]. We give a

new classical algorithm for evaluating this action in time L(1
2 ,

√
3

2 ), assuming GRH. Since Kuper-
berg’s sieve runs in time L(1

2 , 0), the overall running time is dominated by the time to compute
the group action. (We also employ a quantum procedure to determine the structure of the group
Cl(O∆) [3], but since this can be done in polynomial time, its cost is negligible.)

Our work apparently represents the first nontrivial application of Kuperberg’s algorithm to a
non-oracular problem. Note that although there is a reduction from certain lattice problems to the
hidden shift problem [14], the overhead involved in this reduction makes the resulting algorithms
for lattice problems no better than the best known classical algorithms.

Kuperberg’s algorithm for the abelian hidden shift problem uses superpolynomial space (specif-
ically, space 2O(

√
log q)), so the same is true of the most straightforward version of our algorithm.

However, we also obtain an algorithm using polynomial space by taking advantage of an alternative
approach to the abelian hidden shift problem introduced by Regev [13]. Regev’s polynomial-space
variant runs slightly slower than Kuperberg’s original algorithm, and consequently the costs of
computing the group action and solving the hidden shift problem both contribute to the asymp-
totic running time in this case. In particular, the version of our algorithm using polynomial space

constructs an isogeny in time L(1
2 ,

√
3

2 +
√

2), again assuming GRH.
Note that Regev only explicitly considered the case of the hidden shift problem in a cyclic group

whose order is a power of 2, and even in that case did not compute the constant c in the running
time L(1

2 , c). As a side result, we fill both of these gaps, showing that the hidden shift problem in

any finite abelian group can be solved in time L(1
2 ,
√

2) using only polynomial space. The group
Cl(O∆) may not even be cyclic, so this extension is necessary for our application.

Our algorithm for computing the action of the class group on elliptic curves is based on the idea
of factoring the ideal class corresponding to the isogeny into a product of ideal classes corresponding
to prime ideals, where the powers of the prime ideals and the primes themselves are not too large.
Related ideas have appeared in previous classical algorithms for computations involving isogenies
[1, 2, 6, 7, 10]. However, in all cases except the algorithm of [2] (which is restricted to curves with
small |∆|), the running times of these algorithms depend on heuristic assumptions that go beyond
GRH. In contrast, by taking advantage of expansion properties of a certain Cayley graph of Cl(O∆)
[9], the analysis of our algorithm only needs to assume GRH. This also allows us to give a new
classical algorithm for evaluating a given isogeny on a given curve, with the same performance as
a previous algorithm [10], but only assuming GRH.

To break the proposed isogeny-based cryptosystems [4, 15, 17], it is sufficient to assume that
the discriminant ∆ of the endomorphism ring of the curves is known. Those proposals assume that
O∆ is a maximal order, in which case ∆ can easily be computed. However, we also give a version
of our algorithm that works when ∆ is unknown. This algorithm operates in a larger group than
Cl(O∆) and makes use of other previous quantum algorithms for abelian groups [11, 18].

This work raises many questions about the power of quantum computers for solving problems
involving elliptic curve isogenies. Of course, it is natural to ask whether our algorithm can be
improved to use only polynomial time. Another potential target for quantum algorithms is the
problem of determining the endomorphism ring of an ordinary elliptic curve. The best known clas-

sical algorithm for this problem takes time L(1
2 ,

√
3

2 ) under fairly aggressive heuristic assumptions
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[1]; it would be interesting even to match the performance of this algorithm with a quantum ap-
proach requiring fewer assumptions. One might also consider quantum algorithms for constructing
isogenies between ordinary elliptic curves of different endomorphism ring or between supersingular
curves.
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