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Graphs

In this talk, graphs will be undirected and simple.

(i.e., no self loops or multiple edges between vertices)

A graph on n vertices can be specified by n(n-1)/2 bits.

A graph property: A (nontrivial) map from the set of all 
graphs to {0,1} that maps isomorphic graphs to the same 
value (i.e., a property that is independent of labeling).

Examples of graph properties: Planarity, bipartiteness, k-
colorability, connectivity, etc.

Non-examples: “the first vertex is isolated”, “odd-
numbered vertices have even degree”
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Query complexity of graph properties

The query complexity model: We can query a black box 
with a pair of vertices (i,j) to find out if there is an edge 
between them. 

All graph properties can be decided with n(n-1)/2 queries.

D(P), R(P), Q(P): Deterministic, randomized and quantum 
query complexities of determining property P

Q(P) ≤ R(P) ≤ D(P) ≤ n(n-1)/2 = O(n2)

Example:  If P is the property of being the empty graph (i.e., 
the property of not containing any edges), then 

D(P) = n(n-1)/2, R(P) = ϴ(n2) and Q(P) = ϴ(n)
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Graph minors

Subgraph: A graph that can be obtained by deleting 
edges and deleting isolated vertices.

Minor: A graph that can be obtained by deleting edges, 
deleting isolated vertices and contracting edges.

Edge contraction: 

Minor-closed property: All minors of a graph possessing 
such a property also possess the property

Examples: Planarity, acyclicity (property of being a 
forest), property of being embeddable on a torus, etc.
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Forbidden minors & forbidden subgraphs

Planarity is characterized by forbidden minors: G is planar 
if and only if it does not contain K5 or K3,3 as a minor.

G is a forest if and only if it does not contain C3 as a minor.

Robertson-Seymour theorem [1983-2004, ≈ 500 pages]:

All minor-closed properties are characterized by a finite
set of forbidden minors.

Forbidden subgraph property (FSP): A property that can 
be characterized by a finite set of forbidden subgraphs

Some properties are both minor closed and FSP, e.g.:

• The property of being the empty graph

• The property of having max degree ≤ 1
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Subgraph-closed and sparse properties

Subgraph-closed properties are closed under the subgraph 
operation, i.e., if G possesses such a property, then all 
subgraphs of G also possess it.

Examples: All minor-closed properties, all FSPs, 
bipartiteness

Sparse property: A property that can only be possessed by 
sparse graphs, where “sparse” means |E| = O(|V|)

Examples: Planarity (planar graphs have |E| ≤ 3|V| — 6), 
Emptiness (|E| = 0), all minor-closed properties (by 
Mader’s theorem), k-regular graphs for any fixed k 
(|E|=k|V|/2)
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Venn diagram of graph properties
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Simple observations

For sparse graph properties P, Q(P) = O(n3/2)

Since there are n(n-1)/2 potential edges, and O(n) edges, 
this is the problem of finding K marked items in a list of size 
N, which requires sqrt(NK) queries, which is O(n3/2) queries.

⇒ Minor-closed properties need at most O(n3/2) queries

Subgraph-closed properties require Ω(n) queries

Proof idea: Since the property is subgraph closed, the 
empty graph possesses the property. Since this is a 
nontrivial property, there is a graph that does not possess 
this property. Distinguishing these two is hard (somewhat 
like the search problem).

⇒ Minor-closed properties require Ω(n) queries 8



Venn diagram of graph properties

For all minor-closed properties P: Q(P)=Ω(n), Q(P)=O(n3/2)  
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Query complexity of ACYCLICITY

The quantum query complexity of ACYCLICITY is ϴ(n3/2). 

Proof idea: Use the adversary method. Use a hard-to-
distinguish set of cyclic graphs and set of acyclic graphs.

Distinguishing a long path from a long cycle is hard given 
only local information. However, paths contain degree-1 
vertices which can be detected in O(n) queries.

Instead, use a path and a disjoint union of a path and cycle. 
(This proof is similar to the lower bound in Dürr et al. 2006)

vs
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Some minor-closed properties

• Q(PLANARITY) = ϴ(n3/2) [Ambainis et al. 2008]

• Q(ACYCLICITY) = ϴ(n3/2) [Previous slide]

• Q(EMPTINESS) = ϴ(n) [Same as the search problem]

• Q(MaxDegree ≤ 1) = ϴ(n) [Search for a vertex of degree 2]

Observation: The first two properties are minor closed but 
not FSP, while the next two are both.

Conjecture:  Minor-closed properties that are not FSP have 
quantum query complexity ϴ(n3/2).

Theorem:

Furthermore, minor-closed properties that are FSP can be 
recognized with o(n3/2) queries.  (More generally, this holds 
for sparse FSPs.) 11



Venn diagram of graph properties
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Quantum walk for sparse FSPs

Consider the FSP property “does not contain H as a 
subgraph”, where H is a fixed graph on (say) 5 vertices.

• Let the vertices of H be v1, v2, v3, v4 and v5.

• We want to check if the given graph G contains H. 
Assume G contains H and try to find it.

• Let the vertices of G that are isomorphic to v1, v2, v3, v4

and v5 in H be u1, u2, u3, u4 and u5 respectively.

• Assume we know the approximate (up to a 
multiplicative factor of 2) degrees of u1, u2, u3, u4 and u5. 
Let these degrees be q1, q2, q3, q4 and q5.

• Let the number of vertices of degree qi in G be ti.
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Quantum walk for sparse FSPs

Our quantum walk algorithm:

• Set up 5 different quantum walks, each searching for one 
of the 5 vertices of H.

• Each walk searches over all ti vertices of degree qi for the 
vertex ui by storing subsets of vertices. 

• Every few steps, the different walks talk to each other and 
check if they have found 5 compatible vertices.

Some salient features of the walks:

• The 5 walks proceed at different speeds (depending on 
the values of ti and qi).

• Sparsity of G is essential: Searching for high-degree 
vertices is expensive, but such vertices are rare. 14



Other applications of our framework

C4 finding problem: Natural generalization of C3 finding.

Q(C3 finding) = O(n1.3) [Magniez–Santha–Szegedy 2007]

Q(C4 finding) = O(n1.25)

Searching for bipartite graphs: Does the input graph 
contain a bipartite graph H as a subgraph?

The framework provides the best known algorithm for this 
problem.

Key idea: The framework applies because graphs excluding 
a bipartite graph cannot be too dense due to an extremal 
graph theory result (Kövári-Sós-Turán theorem).
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Open problems

1. What is the complexity of minor-closed properties 
that are FSP? Somewhere between Ω(n) and o(n3/2). 
Can all such properties be recognized in O(n) queries?

2. Some specific examples like “does the graph contain a 
path of length k” may be easier to handle. Can we 
improve the upper bounds for these properties?

3. Can we improve the Ω(n) lower bound for any FSP? 
No such lower bound is known. (This cannot be done 
with the positive weights adversary method due to 
the certificate complexity barrier.) 

4. The triangle-finding problem: Does the graph contain 
C3 as a subgraph?  Known bounds: Ω(n), O(n1.3).
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Thank you
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