Information propagation for interacting particle systems

Norbert Schuch California Institute of Technology

joint work with Sarah Harrison, Tobias Osborne, and Jens Eisert

Introduction

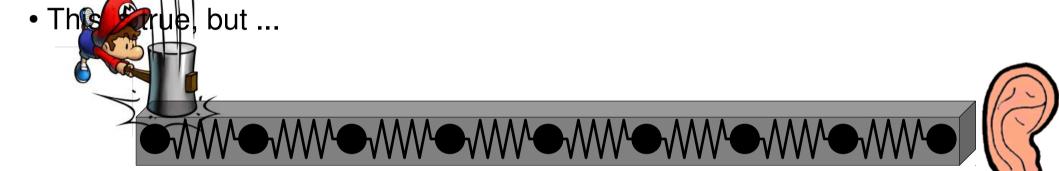
• How fast can **information propagate** in physical systems?

→ Obvious answer: Relativity ⇒ No faster than the speed of light!

• This is true, but ...

• How fast can **information propagate** in physical systems?

→ Obvious answer: Relativity ⇒ No faster than the speed of light!

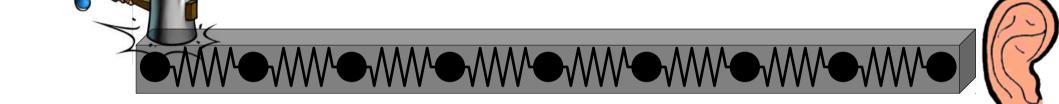


... e.g. in classical mechanical systems, information propagates at a **speed of sound**, without the need for relativistic arguments!

- This speed can be understood from the microscopic model, using
 - that it is local
 - that the interactions have bounded strength

• How fast can **information propagate** in physical systems?

→ Obvious answer: Relativity ⇒ No faster than the speed of light!



... e.g. in classical mechanical systems, information propagates at a **speed of sound**, without the need for relativistic arguments!

- This speed can be understood from the microscopic model, using
 - that it is **local**

but ...

• This

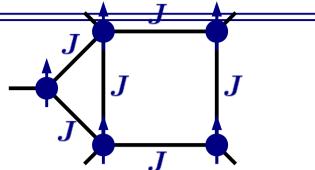
- that the interactions have bounded strength

 \Rightarrow Finite propagation speed can be understood non-relativistically!

Quantum mechanical systems

- What about quantum mechanical systems?
- Quantum spin systems:

$$- \downarrow J \downarrow J \downarrow J \downarrow J \downarrow$$



 $H = \sum_{\langle j,k \rangle} h_{jk}$; $\|h_{jk}\|_{op} \leq J$: local Hamiltonian of bounded strength

Quantum mechanical systems

- What about quantum mechanical systems?
- Quantum spin systems:

 $- \downarrow J \downarrow J \downarrow J \downarrow$

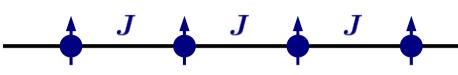
 $H = \sum_{\langle j,k \rangle} h_{jk}$; $\|h_{jk}\|_{op} \leq J$: local Hamiltonian of bounded strength

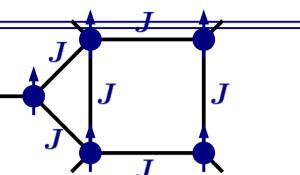
• Lieb-Robinson bounds: [Lieb & Robinson '72, Hastings '04, Nachtergaele & Sims '06] $\|[A(t), B]\| \le c \|A\| \|B\| \exp[-(L - vt)/\xi]$ Lieb-Robinson velocity $v = c_G J$

depends on graph

Quantum mechanical systems

- What about quantum mechanical systems?
- Quantum spin systems:





 $H = \sum_{\langle j,k \rangle} h_{jk}$; $\|h_{jk}\|_{op} \leq J$: local Hamiltonian of bounded strength

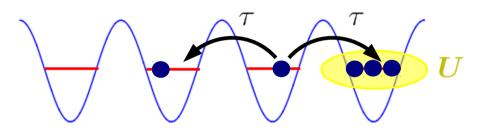
• Lieb-Robinson bounds: $\|[A(t), B]\| \le c \|A\| \|B\| \exp[-(L - vt)/\xi]$ Lieb-Robinson velocity $v = c_G J$ depends on graph • Relevance: • question of fundamental interest • propagation speed of perturbations • facilitates simulation of dynamics • imaginary time \Rightarrow exponential decay of correlations • What about systems of interacting particles, such as bosons?

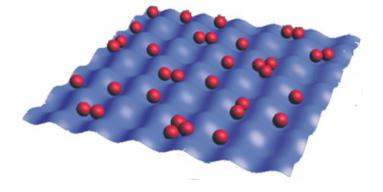
 $(\rightarrow \text{ in particular, chains of } quantum \text{ oscillators})$

• What about systems of interacting particles, such as bosons?

 $(\rightarrow \text{ in particular, chains of } quantum \text{ oscillators})$

• canonical example: **Bose-Hubbard model:**

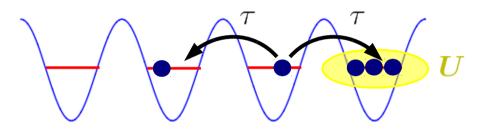


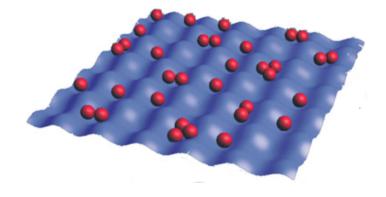


• What about systems of interacting particles, such as bosons?

 $(\rightarrow \text{ in particular, chains of } quantum \text{ oscillators})$

canonical example: Bose-Hubbard model:





$$H_{\rm BH} = -\tau \sum_{\langle j,k \rangle} (\hat{a}_j^{\dagger} \hat{a}_k + \hat{a}_k^{\dagger} \hat{a}_j) + U \sum_j \hat{n}_j (\hat{n}_j - 1)$$

 \hat{a}_{j} : annihilate a particle at site j \hat{a}_{j}^{\dagger} : create a particle at site j $\hat{a}_{j}|n\rangle = \sqrt{n}|n-1\rangle \quad \leftrightarrow \quad \hat{n}_{j} = \hat{a}_{j}^{\dagger}\hat{a}_{j}$: counts particles at site

• What is the problem with bosonic systems?

- What is the problem with bosonic systems?
- Lieb-Robinson bound does not apply:

$$a_j^{\dagger} a_k |n_j - 1, n_k\rangle = \sqrt{n_j n_k} |n_j, n_k - 1\rangle$$

 \Rightarrow hopping term $a_j^{\dagger}a_k$ unbounded (or only by $||a_j^{\dagger}a_k|| \leq N_{\text{tot}}$)

 \Rightarrow Lieb-Robinson velocity $v \propto ||h_{jk}|| \sim N_{tot}$

- What is the problem with bosonic systems?
- Lieb-Robinson bound does not apply:

$$a_j^{\dagger}a_k|n_j - 1, n_k\rangle = \sqrt{n_j n_k}|n_j, n_k - 1\rangle$$

 \Rightarrow hopping term $a_j^{\dagger}a_k$ unbounded (or only by $||a_j^{\dagger}a_k|| \le N_{\text{tot}}$) \Rightarrow Lieb-Robinson velocity $v \propto ||h_{jk}|| \sim N_{\text{tot}}$

- examples where n_k and thus v grow unboundedly exist! [Gross & Eisert 2009]
 - \Rightarrow need **constraints on Hamiltonian** (e.g. particle number conserving)

- What is the problem with bosonic systems?
- Lieb-Robinson bound does not apply:

$$a_j^{\dagger}a_k|n_j-1,n_k\rangle = \sqrt{n_j n_k}|n_j,n_k-1\rangle$$

 \Rightarrow hopping term $a_j^{\dagger}a_k$ unbounded (or only by $||a_j^{\dagger}a_k|| \le N_{\text{tot}}$) \Rightarrow Lieb-Robinson velocity $v \propto ||h_{jk}|| \sim N_{\text{tot}}$

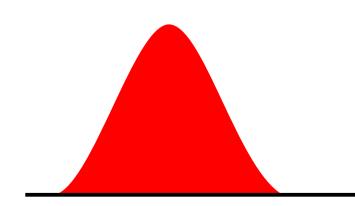
- examples where n_k and thus v grow unboundedly exist! [Gross & Eisert 2009]
 - \Rightarrow need **constraints on Hamiltonian** (e.g. particle number conserving)
- hopping rate (and thus v) will depend on the filling of the lattice:
 ⇒ need constraints on initial state
- Note: bounds exist for quadr. Hamiltonians and certain perturbations thereof [Nachtergaele, Raz, Schlein, Sims 2009]

Idea: Restrict to relevant models

- Aim: propagation speed for **Bose-Hubbard type models**
- How can we obtain a meaningful propagation speed?
 - restrict to certain initial states of interest (which allow for finite speed of propagation)
 - only keep track of relevant information (how do particles propagate)

Idea: Restrict to relevant models

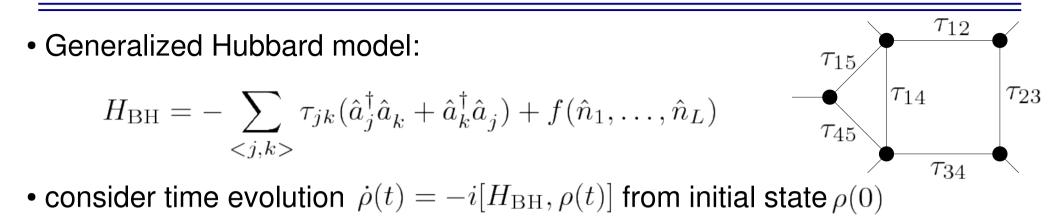
- Aim: propagation speed for **Bose-Hubbard type models**
- How can we obtain a meaningful propagation speed?
 - restrict to certain initial states of interest (which allow for finite speed of propagation)
 - only keep track of relevant information (how do particles propagate)
- We study: How do particles (excitations) propagate into an empty region?



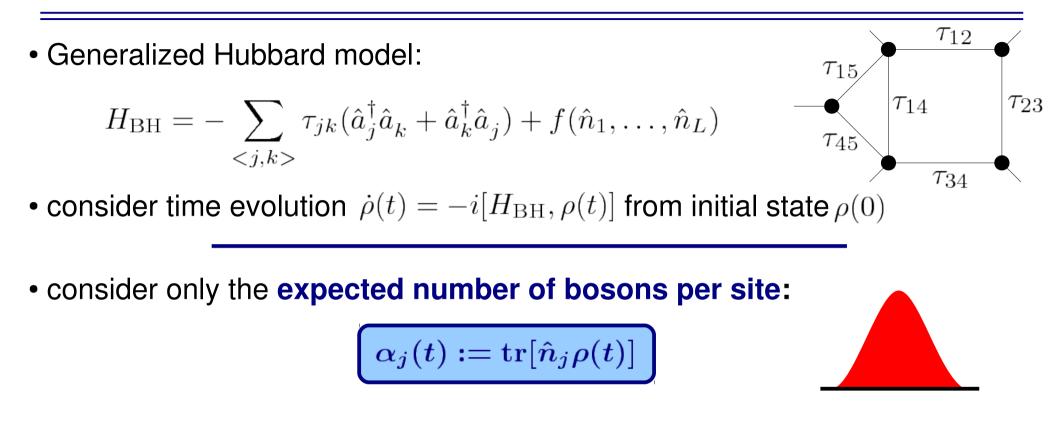
Idea: Restrict to relevant models

- Aim: propagation speed for **Bose-Hubbard type models**
- How can we obtain a meaningful propagation speed?
 - restrict to certain initial states of interest (which allow for finite speed of propagation)
 - only keep track of relevant information (how do particles propagate)
- We study: How do particles (excitations) propagate into an empty region?

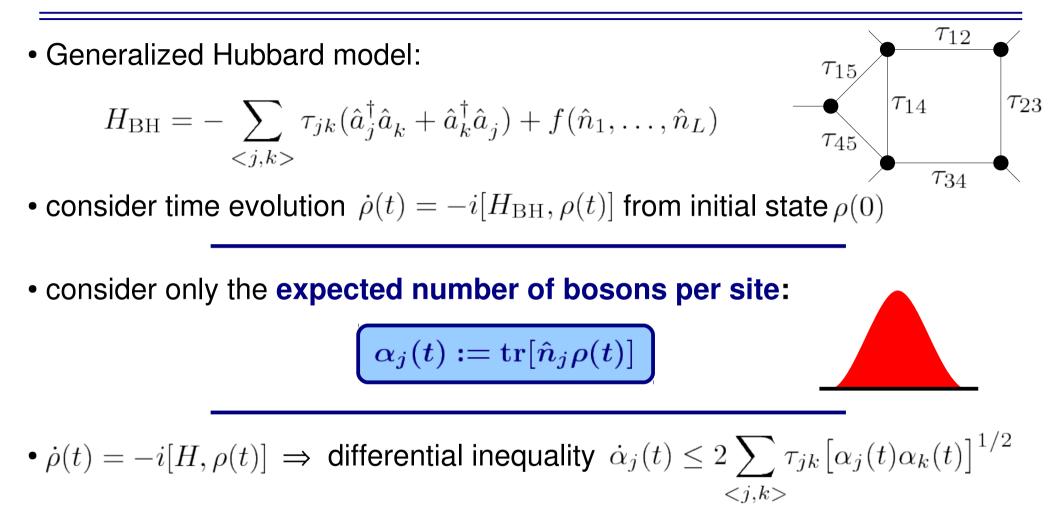
Propagation of particles in the Hubbard model



Propagation of particles in the Hubbard model



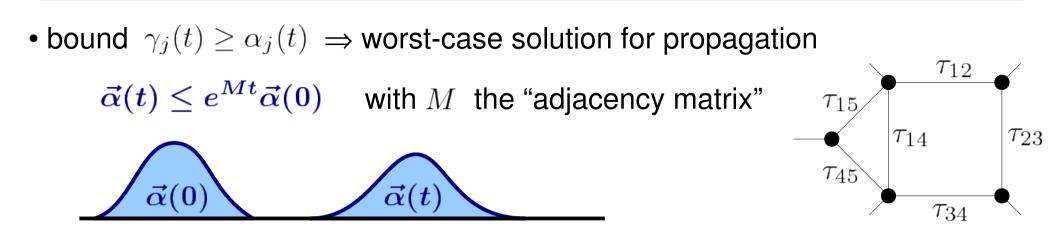
Propagation of particles in the Hubbard model



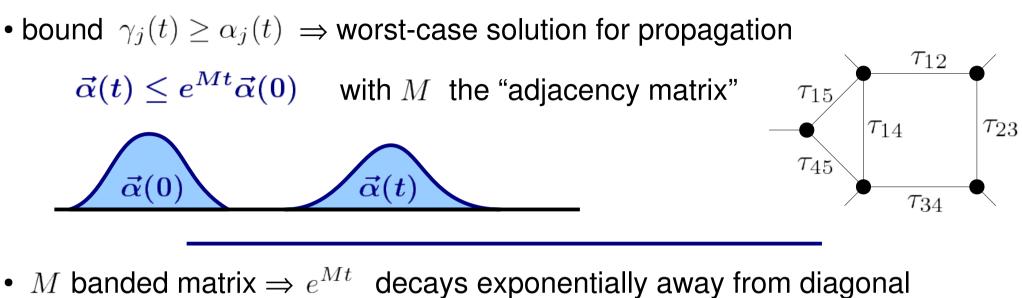
 \Rightarrow worst-case upper bound $\gamma_j(t) \ge \alpha_j(t)$ evolves according to:

$$\dot{\gamma}_j(t) = 2 \sum_{\langle j,k \rangle} \tau_{jk} (\gamma_j(t) + \gamma_k(t))$$
 (linearized)

Obtaining a speed limit



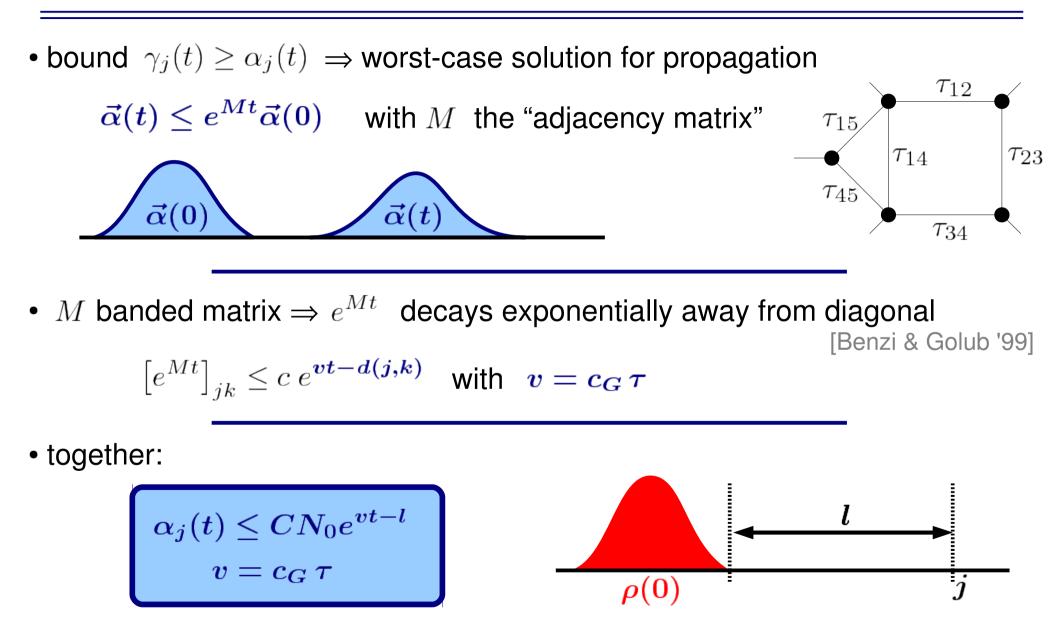
Obtaining a speed limit



[Benzi & Golub '99]

$$\left[e^{Mt}
ight]_{jk} \leq c \; e^{oldsymbol{vt} - oldsymbol{d}(oldsymbol{j},oldsymbol{k})} \quad ext{with} \; \; oldsymbol{v} = oldsymbol{c}_{oldsymbol{G}} \, oldsymbol{ au}$$

Obtaining a speed limit



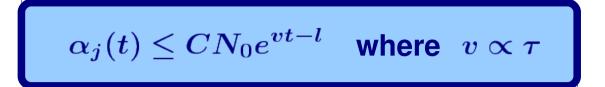
 \Rightarrow speed independent of particle number!

Speed limit for interacting particles

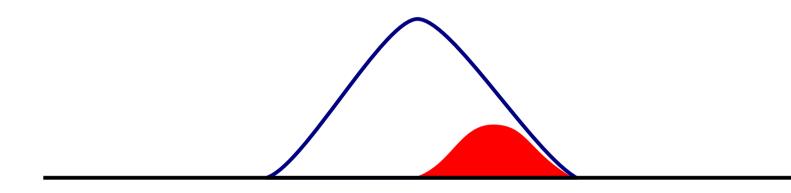
$$lpha_j(t) \leq C N_0 e^{vt-l}$$
 where $v \propto au$

• Proof idea: Study evolution of worst case bound on $\alpha_j(t)$:

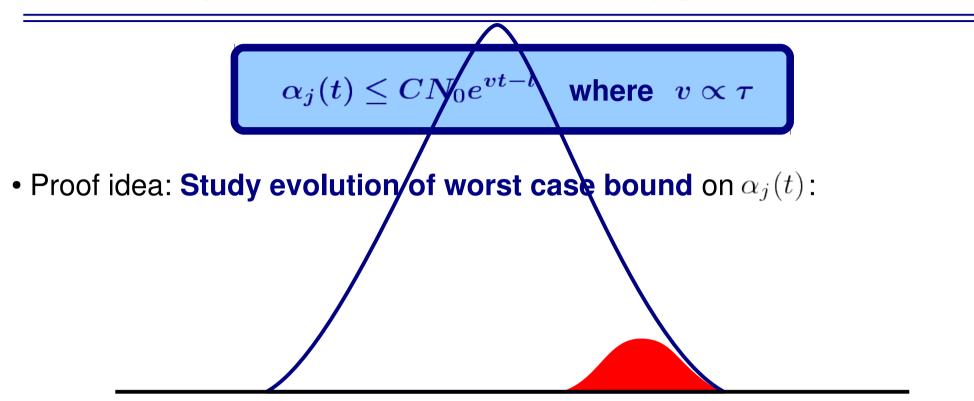
Speed limit for interacting particles

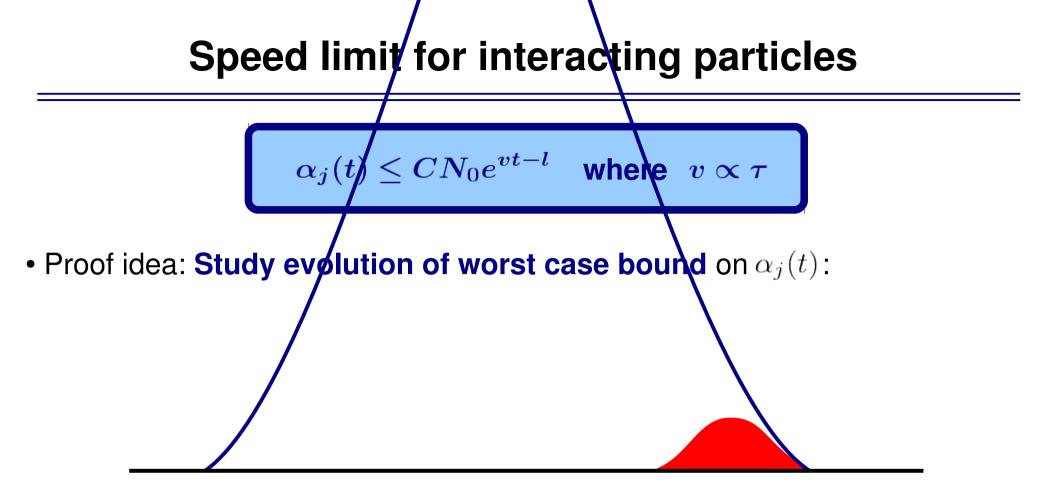


• Proof idea: Study evolution of worst case bound on $\alpha_j(t)$:

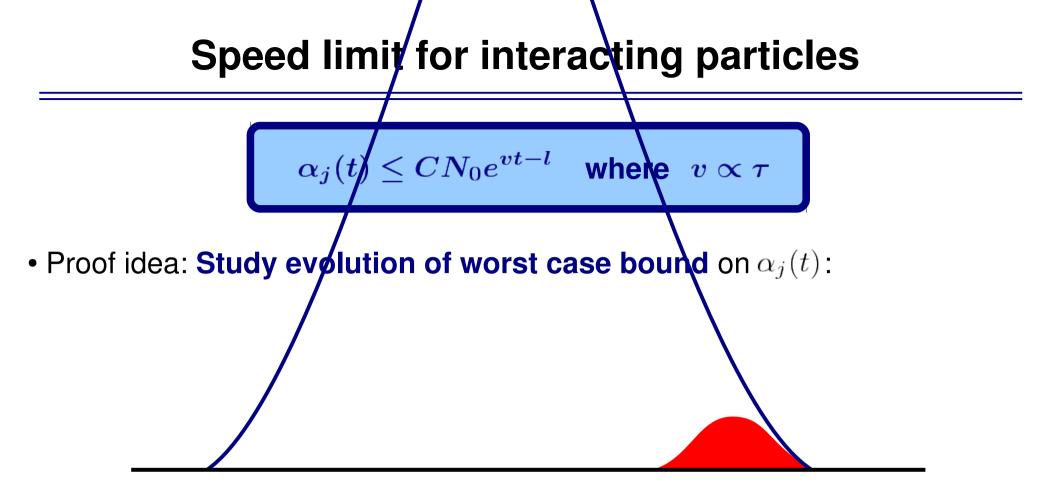


Speed limit for interacting particles





argument works for any Hubbard-type model on any graph



- argument works for any Hubbard-type model on any graph
- extension possible to
 - higher moments of particle number
 - arbitrary local operators
 - operators acting on larger blocks (up to log-size)

... by iteratively bounding those quantities by $lpha_j(t)$.

 can be extended to several species of particles, fermions, Bose-Fermi mixtures, and even anyons:

$$H = -\sum_{\langle j,k \rangle,s} \tau_{jk} (\hat{a}_{j,s}^{\dagger} \hat{a}_{k,s} + \hat{a}_{k,s}^{\dagger} \hat{a}_{j,s}) + f(\{n_{j,s}\}_{j,s})$$

 \rightarrow can be understood as **hopping on independent graphs**

 can be extended to several species of particles, fermions, Bose-Fermi mixtures, and even anyons:

$$H = -\sum_{\langle j,k \rangle,s} \tau_{jk} (\hat{a}_{j,s}^{\dagger} \hat{a}_{k,s} + \hat{a}_{k,s}^{\dagger} \hat{a}_{j,s}) + f(\{n_{j,s}\}_{j,s})$$

 \rightarrow can be understood as **hopping on independent graphs**

• works for certain dissipative theories, e.g. for particle losses:

$$\dot{\rho}(t) = -i[H_{BH}, \rho(t)] - \mathcal{L}[\rho(t)] \qquad \text{describes} \\ \text{loss of particles}$$

$$\Rightarrow \dot{\boldsymbol{\alpha}}_{\boldsymbol{j}}(\boldsymbol{t}) = \dot{\alpha}_{\boldsymbol{j}}^{\operatorname{Ham}}(t) - \underbrace{\dot{\alpha}_{\boldsymbol{j}}^{\operatorname{diss}}(t)}_{\geq 0} \leq \dot{\boldsymbol{\alpha}}_{\boldsymbol{j}}^{\operatorname{Ham}}(\boldsymbol{t})$$

 can be extended to several species of particles, fermions, Bose-Fermi mixtures, and even anyons:

$$H = -\sum_{\langle j,k \rangle,s} \tau_{jk} (\hat{a}_{j,s}^{\dagger} \hat{a}_{k,s} + \hat{a}_{k,s}^{\dagger} \hat{a}_{j,s}) + f(\{n_{j,s}\}_{j,s})$$

 \rightarrow can be understood as **hopping on independent graphs**

• works for certain dissipative theories, e.g. for particle losses:

$$\dot{\rho}(t) = -i[H_{BH}, \rho(t)] - \mathcal{L}[\rho(t)] \qquad \text{describes} \\ \text{loss of particles}$$

$$\Rightarrow \dot{\boldsymbol{\alpha}}_{\boldsymbol{j}}(\boldsymbol{t}) = \dot{\alpha}_{\boldsymbol{j}}^{\operatorname{Ham}}(t) - \underbrace{\dot{\alpha}_{\boldsymbol{j}}^{\operatorname{diss}}(t)}_{\geq 0} \leq \dot{\boldsymbol{\alpha}}_{\boldsymbol{j}}^{\operatorname{Ham}}(\boldsymbol{t})$$

• idea extendible to **continuum theories**: either continuum limit, or continuous differential inequalities for $\alpha(x, t)$

Summary

- We have studied the propagation of interacting bosons
- We have found a finite propagation speed for any excitation into the initially unoccupied region
- Propagation speed only depends on coupling strength
- Extends to Bose-Fermi mixtures, dissipative models, continuum theories

arXiv:1010.4576