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Abstract

We show that excitations of interacting quantum particles in lattice models
– and thus information in these systems – always propagate with a finite speed
of sound. Our argument is simple yet general and shows that by focusing on
the physically relevant observables one can typically expect a bounded speed of
information propagation. It applies equally to quantum spins, bosons such as
in the Bose-Hubbard model, fermions, anyons, and general mixtures thereof,
on arbitrary lattices of any dimension. It also pertains to dissipative dynamics
on the lattice, and generalizes to the continuum for quantum fields. Our result
can be seen as a meaningful analogue of the Lieb-Robinson bound for strongly
correlated models.

[The technical version, which also includes references, has been submitted as an attachment.]

How fast can information propagate through a system of interacting particles?
The obvious answer seems: No faster than the speed of light. While certainly cor-
rect, this is not the answer one is usually looking for. For instance, in a classical
solid, liquid, or gas, perturbations rather propagate at the speed of sound, which is
determined by the way the particles in the system locally interact with each other,
without any reference to relativistic effects. We would like to understand whether a
similar “speed of sound” exists for interacting quantum systems, limiting the propa-
gation speed of localized excitations, i.e., (quasi-)particles. For interacting quantum
spin systems, such a maximal velocity, known as the Lieb-Robinson bound, has in-
deed been shown. While it seems appealing that there should always be such a
bound, systems of interacting bosons can show counterintuitive effects, in partic-
ular since the interpretation of excitations in terms of particles is no longer fully
justified; in fact, an example of a non-relativistic system where bosons are steadily
accelerated through a lattice has recently been constructed. This example suggests
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the disturbing possibility that our intuition about the propagation of information
in quantum systems is wrong, and only relativistic quantum theory can provide a
proper speed limit.

There are many important reasons, both theoretical and experimental, to in-
vestigate information propagation bounds in interacting particle systems. It turns
out that such bounds lead directly to important, general results concerning the
clustering of correlations in equilibrium states. Lieb-Robinson bounds also facil-
itate the simulatability of strongly interacting quantum systems – the mere ex-
istence of a Lieb-Robinson bound for a quantum system can be used to develop
general, efficient, numerical procedures to simulate the dynamics of lattice models.
From a more practical perspective, new experiments allow one to explore the non-
equilibrium dynamics of ultracold strongly correlated quantum particles – bosonic,
fermionic, or mixtures thereof – in optical lattices with unprecedented control. In
such experiments, it is important to understand how the particles move: For exam-
ple, when studying instances of anomalous expansion, it is far from clear a priori
whether it is possible to identify a meaningful speed of sound at all.

The original Lieb-Robinson bound already applies in a very general setting,
namely, to any low-dimensional quantum spin system, and to any fermionic system
confined to a lattice. It is therefore tempting to extend the original argument to
other settings, in particular, to systems of interacting bosons; unfortunately, all
attempts to do so have run into insuperable difficulties for systems with nonlin-
ear interactions, including the Bose-Hubbard model. The reason for the failure of
the original Lieb-Robinson argument is fundamentally connected to the unbound-
edness of the creation operator for bosons: The Lieb-Robinson velocity depends
on the norm of the interaction, which is unbounded for e.g. bosons hopping on a
lattice, and examples of bosonic systems where particles steadily accelerate have
been constructed.

In our work, we show how these difficulties can be overcome by considering the
right question concerning the propagation of information. Our approach allows us
to determine Lieb-Robinson type bounds for the maximal speed at which informa-
tion can propagate through systems of interacting particles in an extremely general
scenario: In particular, our approach applies to systems of interacting bosons, as
well as to fermions, spins, anyons, or mixtures thereof, both on lattices and in the
continuum. Moreover, it can also be applied beyond Hamiltonian evolution, such
as to systems evolving under some local dissipative dynamics.

The type of system we consider in our work is exemplified by the Bose-Hubbard
model, a model of bosonic particles hopping on an arbitrary lattice G of any finite
dimension and interacting via an on-site repulsion,

ĤBH = −τ
∑
〈j,k〉

(b̂†j b̂k + h.c.) +
U
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∑
j

n̂j(n̂j − 1) .

Here, the first summation is over neighboring sites on the lattice, b̂j is the boson
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annihilation operator for site j, and n̂j = b̂†j b̂j is the number operator. Our ar-
guments generalize directly to models consisting of bosons, fermions, anyons, or
mixtures thereof, with an arbitrary (even non-local) attraction or repulsion term
which depends only on the local particle numbers.

The scenario we consider is that of an initially empty lattice, where at time
t = 0 particles are placed in an arbitrary quantum state in some region R of the
lattice (R can well cover most of the lattice). What we want to know is how fast
these particles propagate into the initially empty region of the lattice: We want to
find a velocity v such that at any site j which has lattice distance l to region R, we
have that for all times t < l/v no particles (and thus no signal whatsoever) have
travelled from R to j, up to a correction exponentially small in l − vt.

The main insight that allows us to derive these bounds is that, in order to
understand the propagation of particles, it is not necessary to consider the evolution
of the initial state as a whole – this would indeed be an impossible task, given the
superexponential dimension of the underlying Hilbert space. Rather, it is sufficient
to focus on a set of relevant observables. In our case, these are the local particle
densities

αj(t) := tr[n̂jρ(t)]

at site j at time t. As we can show, the time derivatives of the αj form a closed
system of differential inequalities. Thus, the worst-case solution of this system of
inequalities that satisfies the initial conditions yields a bound on how fast particles,
and thus information, propagate in the lattice. Indeed, it allows us to infer a
bound v on the speed of information propagation (which only depends on the
hopping rate τ and the structure of the underlying graph), up to an exponentially
small correction: αj(t) ≤ const. × exp[vt − l], where l is the distance of j from R.
This, somewhat surprisingly, demonstrates that the propagation of particles can be
understood by considering the evolution of a restricted set of observables, rather
than the evolution of the full quantum state of the system.

Our results on the propagation of particles as detected by αj(t) can be readily
generalized to the propagation of information as detected by any kind of local
observable, since the measured signal can always be bounded by the number of
particles which have already propagated. We also discuss how to generalize our
results to the case where one has several species of bosons, fermions, anyons, or
Bose-Fermi mixtures as is the case in experiments. Our techniques do not only
apply to Hamiltonian evolution, but also to a range of dissipative systems, and can
be generalized to continuous theories.

The technical version, which also includes references, has been submitted
as an attachment.
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