Exponential Quantum Speed-ups are Generic

Fernando G.S.L. Brandao and Michat Horodecki

I. ABSTRACT

A central problem in quantum computation is to
understand which quantum circuits are useful for
exponential speed-ups over classical computation.
We address this question in the setting of query com-
plexity and show that for almost any sufficiently
long quantum circuit one can construct a black-box
problem which is solved by the circuit with a con-
stant number of quantum queries, but which re-
quires exponentially many classical queries, even if
the classical machine has the ability to postselect.

We prove the result in two steps. In the first,
we show that almost any element of an approxi-
mate unitary 3-design is useful to solve a certain
black-box problem efficiently. The problem is based
on a recent oracle construction of Aaronson [1]
and gives an exponential separation between quan-
tum and classical bounded-error with postselection
query complexities.

In the second step, which may be of independent
interest, we prove that linear-sized random quan-
tum circuits give an approximate unitary 3-design.
The key ingredient in the proof is a technique from
quantum many-body theory to lower bound the
spectral gap of local quantum Hamiltonians.

II. BACKGROUND AND MOTIVATION

In a recent breakthrough in quantum query-
complexity, Aaronson [1] proposed a new ora-
cle problem as a candidate to put BQP outside
the polynomial hierarchy (PH). Although the
usefulness of this oracle for the BQP vs. PH
question still has to be elucidated, the prob-
lem was shown to have a huge separation of
quantum and classical query complexities: it
can be solved by a constant number of quantum
queries, while it requires exponentially many
queries by a classical machine, even if we give
the classical machine the — extremely powerful
— ability to postselect on a given result of the
computation. This problem can also be used to
prove all known oracle separations of BQP and

classical complexity classes.

Aaronson’s problem, named Fourier Check-
ing, is the following: We are given two boolean
functions f,g : {0,1}" — {—1,1} with the
promise that either

e fand g are chosen uniformly at random,
or

e foravector v € R2" with entries v, drawn
independently from a normal distribu-
tion of mean 0 and variance 1, the func-
tions are chosen as f(z) = sgn(v,) and
g(x) = sgn(0;). Here the vector ¢ is
the Fourier transform over Zj of v and is
given by

Uy = Z (=1)"Yw,.

y€{0,1}"

@

The task is to decide which is the case. In words,
we should determine if the two functions are
not correlated at all or if one of them is well cor-
related with the Fourier transform of the other.

Considering how well this problem fleshes
out the superiority of quantum computation to
classical, it is worthwhile to try to understand
what exactly gives its strength. For instance,
what is the role played by the Fourier trans-
form, both the the definition of the problem and
in the quantum algorithm solving it? Can we
replace it by some other transformation? One
of the contributions of our work is to shed light
on these questions.

From a broader perspective, we are con-
cerned with the following question, central to
our understanding of the computational capa-
bilities offered by quantum mechanics: What is
the set of quantum circuits which provide large
quantum speed-ups? More precisely, for which
quantum circuits can we construct black-box
problems which are solved by the circuit with
only a few queries to the black-box, but which
require a large number of queries for random-
ized classical computation? This question is in



a sense a converse to the well-studied problem
of characterizing the class of black-box prob-
lem whose solutions have significant quantum
speed-ups (see e.g. [2, 3]).

IIT. OUR RESULTS

In our paper [4] we generalize the Fourier
Checking problem [1]] and show that the Fourier
transform, both in the definition of the problem
and in the quantum algorithm solving it, can be
replaced by a large class of quantum circuits.
These include both the Fourier transform over
any (possibly non-abelian) finite group and al-
most any sufficiently long quantum circuit from
a natural distribution on the set of quantum
circuits. We obtain exponential separations of
quantum and postselected classical query com-
plexities for all such circuits.

Our result is of a similar flavor to Harrow
and Hallgren’s generalization of the resursive
fourier sampling problem to generic circuits [5].
However, while they could only show a con-
stant vs. linear separation of quantum and clas-
sical query complexities (which can be boosted
to a polynomial versus superpolynomial one by
recursion), we are able to show a constant vs. ex-
ponential separation, even allowing the classical
machine the ability to postselect on computa-
tion outcomes.

Flat circuits imply exponential separation: In
more detail, we first introduce a simple new
measure of flatness, or dispersiveness, of a uni-
tary U on n qubits, denoted C(U) . It is de-
fined as the minimal min-entropy of the outcome
probability distribution of a computational ba-
sis measurement on U|j). It thus measures the
worst-case dispersiveness of states obtained by
applying U to computational basis states.

Then we define the black-box problem U-
CIRCUIT CHECKING, a variant of fourier check-
ing in which the Fourier transform in the def-
inition of the vector ¢ (given by Eq. (I)) is
replaced by U. On a quantum computer we
can solve U-CIRCUIT CHECKING as follows: we
prepare each qubit in the |+) := (|0) + [1))/V/2
state, forming the uniform superposition over

the computational basis. Then we query the f
function, apply the circuit U, query the g func-
tion, and measure each qubit in the Hadamard
basis, accepting if all of them are found in the
|+) state.

Theorem I For any circuit U acting on n qubits
for which C(U) = Q(n) the problem U-
CIRCUIT CHECKING shows an exponential sepa-
ration of quantum and postselected classical query
complexities.

Therefore we can identity the flatness of the cir-
cuit U, represented by a large C'(U), as the cru-
cial property behind the quantum speed-ups in
U-CIRCUIT CHECKING.

We then proceed by giving two classes of
unitaries with C(U) = Q(n).

Theorem II

(i) Let Ugrr(G) be the quantum Fourier
transform over the finite group G. Then
C(Ugrr(G)) = 5log|G|.

(ii) Given any 2~3"-approximate unitary t-
design on n qubits, all but a 2~(t(1=F)=2)n+1
fraction of its elements have C(U) > fn.

In particular, we find that for 2~ 9n_
approximate unitary 3-designs, all but
a 272+l fraction of its element have
C(U) > n/6. We note that our construc-
tion do not work for approximate unitary
2-design and thus gives the first application of
a unitary 3-design.

Random circuits are unitary 3-designs: A
unitary t¢-design is an ensemble of unitaries
{u(dU),U}, for a measure p on the set of uni-
taries, such that the average (over p) of any ¢-
degree polynomial on the entries of U and their
complex conjugates is equal to the average over
the Haar measure. An approximate unitary -
design is a relaxed version of the previous def-
inition, in which we only require that the aver-
ages are e-close to each other.

In a series of papers it was established that
polynomially long random quantum circuits
(with each step given by an application of a



random two-qtubit gate to two randomly cho-
sen qubits) constitute an approximate unitary
2-design. Although there is evidence that ran-
dom quantum circuits of polynomial lenght are
unitary ¢-design for every ¢ = poly(n), this has
not been rigorously proved so far, even for the
3-design case.

Here we prove that random quantum cir-
cuits are indeed approximate unitary 3-designs.

Theorem III O(nlog(1/e))-size random quan-
tum circuits form an c-approximate unitary 3-
design.

The proof of Theorem [I1I| is based on a re-
duction connecting the convergence rate of mo-
ments of the random quantum circuit to the
spectral gap of a quantum local Hamiltonian.
Our main contribution is to show that we can
obtain a lower bound on this spectral gap em-
ploying a technique from quantum many-body
theory used e.g. in [6-8].

In particular, we are able to reduce the prob-
lem of bounding the spectral gap of the random
walk on n qubits induced by the random cir-
cuit, to bounding the spectral gap of the same
random walk, but now only defined on three
neighbouring qubits. Then it suffices to bound
the convergence time of the second and third
moments of the latter random walk in order
to prove that the random circuit constitute a
3-design. We believe our approach is promis-
ing also for higher values of ¢ and might pave
the way to a proof that random quantum cir-
cuits are approximate unitary t-designs for all

t = poly(n).

Combining Theorems [[II] and [l we obtain
our main result that almost any quadratic-sized
quantum circuit is useful for exponential quan-
tum speed-ups.

Theorem IV For the distribution induced by a
random quantum circuit of length O(n?) on
n qubits, all but an exponential small frac-
tion of quantum circuits U are such that U-
CIRCUIT CHECKING shows an exponential gap in
the quantum and the postselected classical query
complexities.

The role of C'(U) and classical efficient solu-
tion for sparse unitaries: We have seen that dis-
persive unitaries U with large C(U) give an ex-
ponential speed-up in U-CIRCUIT CHECKING.
Is alarge C(U) always required for a speed-up?
We present two results indicating that this is in-
deed the case.

First we show that with a modified notion of
oracle access in which a different independent
realization of the random parameters of the ora-
cle is chosen in each query, a linear C'(U) is also
necessary for an exponential speed-up. Second
we consider the U-CIRCUIT CHECKING prob-
lem for approximately-sparse U, defined as uni-
taries which can be approximated (in operator
norm) by a sparse matrix with only polynomi-
ally many non-zero entries in each row and col-
umn, and show the randomized classical query
complexity to be polynomial in this case.
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