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Encryption of a classical message

Alice Bob
Resources

K K

Transmit X to Bob

Task
X ∈u {0, 1}n (message)

Shared secret key K ∈u {0, 1}s

Public communication channel
classical or quantum

EK KD

X

Bob: K known → Decode E(X, K) using K to get X

Eve: K unknown → E(X, K) gives no information about X
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Encryption of a classical message

Alice Bob

Transmit X to Bob

Task
X ∈u {0, 1}n (message)

EK KD

XI

K ∈u {0, 1}s

1 Perfect secrecy: X and I are independent

Must have s > n (classical or quantum channels)
Possible with s = n: E(X, K) = X ⊕ K [One-time pad]

2 Approximate secrecy: X and I ε-close to independent
Classical channel: s > n − 1 for ε < 1/2
Quantum channel:

There exists E,D with s = 3 log(1/ε)

There exists E,D efficient quantum circuits with s = O(log(n/ε))
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1 Metric uncertainty relations: definition and applications
Definition
Application: Encryption
Application: Quantum equality testing

2 Metric uncertainty relations: constructions
Known constructions
Metric interpretation
Efficient metric uncertainty relation
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Uncertainty relations
Property of:

A set of measurements {B0,B1, . . . ,Bt−1} (bases here)
Notational convenience: {B0,B1, . . . ,Bt−1}↔ {U0, U1, . . . , Ut−1}

where Uk : Bk 7→ {|x〉}x∈{0,1}n fixed computational basis

Measure Bk ⇐⇒ apply Uk and measure {|x〉}x∈{0,1}n

Expresses:
Uncertainty of outcome distributions

{
pU0|ψ〉, . . . , pUt−1|ψ〉

}
∀|ψ〉

Measurements “incompatible”

Example: {+,×} ↔ {I, H}

|ψ〉 = α|0〉+ β|1〉
pI|ψ〉 =

[
|〈0|I|ψ〉|2, |〈1|I|ψ〉|2

]
=
[
|α|2, |β|2

]
pH|ψ〉 =

[
|〈0|H|ψ〉|2, |〈1|H|ψ〉|2

]
=
[
|α+β|2

2 , |α−β|2

2

]
Incompatibility of + and ×:

For all |ψ〉, uncertainty(pI|ψ〉) + uncertainty(pH|ψ〉) > large
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Quantifying uncertainty

For all |ψ〉,
t−1∑

k=0

uncertainty(pUk|ψ〉) > large

Uncertainty:
Entropy H(·)

Closeness to uniform ∆(·, unif)
(the smaller, the more uncertain)
∆(p, q) def

= 1
2
∑

x∈X |p(x) − q(x)| total variation distance
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Quantifying uncertainty

For all |ψ〉,
t−1∑

k=0

∆(pUk|ψ〉, unif) 6 small

Uncertainty:
Entropy H(·)
Closeness to uniform ∆(·, unif)
(the smaller, the more uncertain)
∆(p, q) def

= 1
2
∑

x∈X |p(x) − q(x)| total variation distance
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Metric uncertainty relations

Recap of definitions:

pUk|ψ〉(x)
def
= |〈x|Uk|ψ〉|2 |ψ〉 Uk pUk|ψ〉

∆(p, q) def
= 1

2

∑
x∈X |p(x) − q(x)| total variation distance

Definition (Metric uncertainty relation)

{U0, . . . , Ut−1} acting on (C2)⊗n

For all |ψ〉 ∈ (C2)⊗n 1
t

t−1∑

k=0

∆
(
pUk|ψ〉, unif({0, 1}n)

)
6 ε
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(
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/ ε

Objectives: t, ε small
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Metric uncertainty relations

Recap of definitions:

pA
Uk|ψ〉(a)

def
=
∑

b∈{0,1}nB |〈a|A〈b|BUk|ψ〉|2 |ψ〉 Uk
pAUk|ψ〉

B

A

∆(p, q) def
= 1

2

∑
x∈X |p(x) − q(x)| total variation distance

Definition (Metric uncertainty relation)

{U0, . . . , Ut−1} acting on (C2)⊗n = A⊗ B with A = (C2)⊗nA and B = (C2)⊗nB

For all |ψ〉 ∈ (C2)⊗n 1
t

t−1∑

k=0

∆
(

pA
Uk|ψ〉, unif({0, 1}nA)

)
6 ε

Intuition: ∀|ψ〉, for most values of k, ∆
(

pA
Uk|ψ〉, unif({0, 1}nA)

)
/ ε

Objectives: t, ε small and nA large
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Metric and entropic uncertainty relations
Entropic uncertainty relations
Use (Shannon) entropy [Bialynicki-Birula, Mycielski, 1975; Deutsch, 1983]

Definition (Metric uncertainty relation)

For all |ψ〉 ∈ (C2)⊗n 1
t

t−1∑

k=0

∆
(

pA
Uk|ψ〉, unif({0, 1}nA)

)
6 ε

H(pUk|ψ〉) > H(pA
Uk|ψ〉) recall pA

Uk|ψ〉(a) =
∑

b

pUk|ψ〉(a, b)

Proposition (Metric UR⇒ Entropic UR)

U0, . . . , Ut−1 define an ε-metric UR, then

For all |ψ〉 ∈ (C2)⊗n 1
t

t−1∑

k=0

H(pUk|ψ〉) > (1 − 2ε)nA − η(ε)

Proof: Fannes’ inequality �
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Metric uncertainty relations: parameters

Theorem (Metric uncertainty relations)

∃ U0, . . . , Ut−1 acting on (C2)⊗n = A⊗ B with

log t nA

Non-explicit 3 log(1/ε) n − 2 log(1/ε)
Efficient O(log(n/ε)) 0.99n
Efficient O(log2(n/ε)) n − O(log(n/ε))

for all |ψ〉 1
t

t−1∑

k=0

∆
(

pA
Uk|ψ〉, unif({0, 1}nA)

)
6 ε.

|ψ〉 Uk
pAUk|ψ〉 ≈ε unif({0, 1}nA)

B

A

for most values of k
10/35
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Encryption of classical messages

Definition (Locking scheme)

Message X ∈u {0, 1}n, key K ∈u {0, 1}s (think s� n)

E is ε-locking scheme if:

Knowing K, can determine X using E(X, K)

Not knowing K, for any measurement whose
outcome is I: ∆(pXI, pX × pI) 6 ε

11/35
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Composability
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Composability

[Ben-Or, Horodecki, Leung, Mayers, Oppenheim, 2005; Konig, Renner, Bariska, Maurer, 2007]
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Information locking: History
[DiVincenzo, Horodecki, Leung, Smolin, Terhal, 2004]

X ∈u {0, 1}n (message) and K ∈u {0, 1} (key)

If K = 0, E(x, 0) = |x〉
If K = 1, E(x, 1) = H⊗n|x〉

Knowing K, can determine X

Without knowing K, for any measurement whose outcome is I:
I(X; I) 6 n/2

One bit of information (K) can unlock n
2 bits about X hidden in the quantum

system E(X, K)

Encoding in random bases

[Hayden, Leung, Shor, Winter, 2004] I(X; I) 6 3 with K ∈ {0, 1}4 log n

[Dupuis, Florjanczyk, Hayden, Leung, 2010] I(X; I) 6 ε with
K ∈ {0, 1}O(log(n/ε)) and stronger definition

13/35
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Locking scheme from a metric uncertainty relation

{Uk} satisfies metric uncertainty relation

|ψ〉 Uk

B

A
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Locking scheme from a metric uncertainty relation

{Uk} satisfies metric uncertainty relation

UK

B

A

Encoding

X ∈u {0, 1}nA

Z ∈u {0, 1}nB

Message

E(X,K)

K ∈u [t]

Key

Private randomness (not shared)
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Locking scheme from a metric uncertainty relation

{Uk} satisfies metric uncertainty relation

U†K

B

A

Encoding

X ∈u {0, 1}nA

Z ∈u {0, 1}nB

Message

E(X,K)

K ∈u [t]

Key

Private randomness (not shared) UK

B

A

Decoding

X

14/35
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Locking scheme from a metric UR: proof

For a ∈ {0, 1}nA and k ∈ [t]

E(a, k) = U†k

(
|a〉〈a|A ⊗ I

B

2nB

)
Uk

U†K

B

A

Encoding

X ∈u {0, 1}nA

Z ∈u {0, 1}nB

Message

E(X,K)

K ∈u [t]

Key

Private randomness (not shared)

Can assume measurement {ξi|ei〉〈ei|}i

Outcome I

Unknown K:

P {X = a|I = i} =
1
t

t−1∑

k=0

pA
Uk|ei〉(a) |ψ〉 Uk

pAUk|ψ〉

B

A

By definition of metric UR: ∆
(

1
t

∑t−1
k=0 pA

Uk|ei〉, unif({0, 1}nA)
)
6 ε

⇒ ∆
(
pX|I=i, unif({0, 1}nA)

)
6 ε for any i �
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Parameters of locking scheme

Theorem
There exists ε-locking schemes

Bits of key Qubits of E(x, k)
Non-explicit 5 log(1/ε) n
Efficient O(log(n/ε)) 1.01n
Efficient O(log2(n/ε)) n

Inf. leakage Key Ciphertext Efficient ?

[DHLST04] n/2 1 n yes
[HLSW04] 3 4 log(n) n no
[DFHL10] εn 2 log(n/ε2) n no

I εn 5 log(1/ε) n no
II εn O(log(n/ε)) 1.01n yes
III εn O(log2(n/ε)) n yes

Note: Can take ε = η/n
16/35
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Another application: Quantum equality testing

Quantum identification or approximate measurement simulation

Alice Bob

Inputs |ψ〉 ∈ (C2)⊗n description of |φ〉 ∈ (C2)⊗n

Ouput yeswith prob |〈ψ|φ〉|2 ± ε

nowith prob 1 − |〈ψ|φ〉|2 ± ε
Objective Minimize quantum communication

Relaxation of quan-
tum info transmission
[Winter, 2004]
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Inputs |ψ〉 ∈ (C2)⊗n description of |φ〉 ∈ (C2)⊗n

Ouput yeswith prob |〈ψ|φ〉|2 ± ε

nowith prob 1 − |〈ψ|φ〉|2 ± ε
Objective Minimize quantum communication

Relaxation of quan-
tum info transmission
[Winter, 2004]

Classical equality testing or identification

Alice Bob

Inputs x ∈ {0, 1}n y ∈ {0, 1}n

Ouput yeswith prob 1x=y ± ε

nowith prob 1x,y ± ε
Objective Minimize classical communication

Communication com-
plexity equality

Remark: Communication is one way
17/35
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Quantum equality testing

Alice Bob

Inputs |ψ〉 ∈ (C2)⊗n description of |φ〉 ∈ (C2)⊗n

Ouput yeswith prob |〈ψ|φ〉|2 ± ε
nowith prob 1 − |〈ψ|φ〉|2 ± ε

Resource quantum communication

Optimal quantum communication ≈ n/2 qubits [Winter, 2004]

With free classical communication: o(n) qubits [Hayden, Winter, 2010]

Remark: classical communication alone is useless

Theorem (Quantum equality testing)

Using free classical communication

There exists a protocol using O(log(1/ε)) qubits communication

There exists an efficient protocol using O(log2(n/ε)) qubits communication

Classical equality testing:
With free shared randomness: O(log(1/ε)) bits communication
Public-coin randomized comm. complexity of equality is O(log(1/ε))

18/35
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From metric UR to quantum equality testing

|ψ〉

1√
t

∑
k |k〉

Uk

Classical description of |φ〉

Dφ

A

B

K

OutputQuantum comm.

Classical comm.

log t qubits

nB qubits

nA bits

Quantum communication: log t + nB qubits
Classical communication: nA bits

Proof: via duality between

forgetfulness and geometry preservation [Hayden, Winter, 2010]
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Uk
A

B

K

E

|ψ〉

1√
t

∑
k |k〉

Uk
A

B

K log t qubits

nB qubits

nA bits

Forgetful

QID code

Quantum communication: log t + nB qubits
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Outline

1 Metric uncertainty relations: definition and applications
Definition
Application: Encryption
Application: Quantum equality testing

2 Metric uncertainty relations: constructions
Known constructions
Metric interpretation
Efficient metric uncertainty relation
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Metric uncertainty relations: definition and applications Metric uncertainty relations: constructions

Entropic URs with t = 2 measurements

Rectilinear and diagonal basis
I, H⊗n

1
2
(
H(p|ψ〉) + H(pH⊗n|ψ〉)

)
>

1
2

n

U0, U1 mutually unbiased: ∀x, y ∈ {0, 1}n |〈x|U0U†1 |y〉|2 = 1
2n

1
2
(
H(pU0|ψ〉) + H(pU1|ψ〉)

)
>

1
2

n [Maassen, Uffink, 1989]

Recall: p|ψ〉(x) = |〈x|ψ〉|2

The factor 1/2 is optimal for t = 2 measurements

To increase the lower bound, need t > 2 measurements
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Entropic URs with t > 2 measurements

Want:
1
t

t−1∑

k=0

H(pUk|ψ〉) > h(t) for all |ψ〉 ∈ (C2)⊗n

with h(t) > n/2 large

Natural candidate: Take t mutually unbiased bases (MUBs)

Definition (Mutually unbiased bases)

U0, . . . , Ut−1 define MUBs if for all x, y ∈ {0, 1}n and all k , k ′

|〈x|UkU†k′ |y〉| 6
1

2n/2

For t = 2n + 1 (full set of MUBs):
h(t) > log(2n + 1) − 1 > n − 1 [Sanchez, 1993; Ivanovic, 1994]

For t < 2n/2, general MUBs do not work well:
∃t MUBs with h(t) ≈ n/2 [Ballester and Wehner, 2007; Ambainis, 2009]
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Entropic URs with t > 2 measurements

Want:
1
t

t−1∑

k=0

H(pUk|ψ〉) > h(t) for all |ψ〉 ∈ (C2)⊗n

with h(t) > n/2 large

Other candidate: random bases [Hayden, Leung, Shor, Winter, 2004]
For t = n4, there exists U0, . . . , Ut−1

1
t

t−1∑

k=0

H(pUk|ψ〉) > n − 3

Remark: Not explicit
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Metric URs: metric interpretation

Definition (Metric uncertainty relation)

For all |ψ〉 ∈ (C2)⊗n 1
t

t−1∑

k=0

∆
(

pA
Uk|ψ〉, unif({0, 1}nA)

)
6 ε

In terms of fidelity

1 − ε 6 1
t

∑
k F
(

pA
Uk|ψ〉, unif({0, 1}nA)

)
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t

∑
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Metric URs: metric interpretation

Definition (Metric uncertainty relation)

For all |ψ〉 ∈ (C2)⊗n 1
t

t−1∑

k=0

∆
(

pA
Uk|ψ〉, unif({0, 1}nA)

)
6 ε

In terms of fidelity

1−ε 6 1
t

∑
k F
(

pA
Uk|ψ〉, unif({0, 1}nA)

)
= 1

t

∑
k,a

√∑
b |〈a|〈b|Uk|ψ〉|2 · 1√

2nA

Define V : |ψ〉 7→ 1√
t

∑

k

|k〉 ⊗Uk|ψ〉

For all |ψ〉 ∈ (C2)⊗n,
√

t2n‖|ψ〉‖2 > ‖V|ψ〉‖`1(`2)
> (1 − ε)

√
t2n‖|ψ〉‖2

V is a low-distortion embedding (C2n
, `2) ↪→ (Ct2n

, `1(`2))

For |ψ〉 ∈ A⊗ B, ‖|ψ〉‖`A
1 (`B

2 )
=
∑

a∈{0,1}nA ‖〈a|ψ〉‖2
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`2 ↪→ `1 embeddings

Dvoretzky’s theorem:
For any normed space (Rd, ‖·‖), there is a large subspace ‖·‖ ≈ε ‖·‖2

[Dvoretzky, 1961; Milman, 1971; Milman and Schechtman, 1986;...]

Most common proof uses probabilistic method

For `1 norm

Explicit constructions [Indyk, 2007; Guruswami, Lee, Razborov, 2009;...]

Applications: high-dimensional nearest neighbour search and
compressed sensing

For Schatten p-norms [Aubrun, Szarek, Werner, 2010]

Counterexample additivity minimum output entropy [Hayden and
Winter 2008; Hastings, 2009]
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Metric uncertainty relations: existence

Theorem (Metric uncertainty relations)

∃ U0, . . . , Ut−1 acting on (C2)⊗n = A⊗ B with

log t = 3 log(1/ε) and nA = n − 2 log(1/ε)

for all |ψ〉 1
t

t−1∑

k=0

∆
(

pA
Uk|ψ〉, unif({0, 1}nA)

)
6 ε.

Proof: Probabilistic argument, U0, . . . , Ut−1 at random [Milman, 1971]
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Metric uncertainty relations: definition and applications Metric uncertainty relations: constructions

Efficient metric UR: Structure of the construction

Use ideas of explicit `2 into `1 embedding of [Indyk, 2007]

Two ingredients:
1 Min-entropy uncertainty relation (mutually unbiased

bases)
2 Permutation extractors
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Min-entropy uncertainty relation

Lemma (MUBs define min-entropy uncertainty relations)

V0, . . . , Vr−1 define MUBs with r = 1/ε2, for all |ψ〉 ∈ (C2)⊗n

1
r

r−1∑

j=0

Hεmin(pVj|ψ〉) ' (1 − ε)n/2

Hmin(p) = − log maxx∈X p(x)

Hεmin(p) = maxq:∆(p,q)6εHmin(q)

Remarks

Interpret as: for most values of j, Hεmin(pVj|ψ〉) ' (1 − ε)n/2

Min-entropy UR of [Damgaard, Fehr, Renner, Salvail, Schaffner, 2007] uses
r = 2n bases

Rate 1/2 is best possible

28/35



Metric uncertainty relations: definition and applications Metric uncertainty relations: constructions

Min-entropy uncertainty relation

Lemma (MUBs define min-entropy uncertainty relations)

V0, . . . , Vr−1 define MUBs with r = 1/ε2, for all |ψ〉 ∈ (C2)⊗n

1
r

r−1∑

j=0

Hεmin(pVj|ψ〉) ' (1 − ε)n/2

Hmin(p) = − log maxx∈X p(x)

Hεmin(p) = maxq:∆(p,q)6εHmin(q)

Remarks

Interpret as: for most values of j, Hεmin(pVj|ψ〉) ' (1 − ε)n/2

Min-entropy UR of [Damgaard, Fehr, Renner, Salvail, Schaffner, 2007] uses
r = 2n bases

Rate 1/2 is best possible

28/35



Metric uncertainty relations: definition and applications Metric uncertainty relations: constructions

Permutation extractors

Definition (Strong permutation extractor)

P0, . . . , Ps−1 permutations of {0, 1}n

Hmin(X) > `

⇒ 1
s

s−1∑

y=0

∆
(

PA
y (X), unif({0, 1}nA)

)
6 ε

PA(x): first nA bits of P(x)

X Py

nA

y

source

≈ε unif
n bits

seed

bits

nB

bits

for most y

Remarks:
Has to work for any X
Want nA large (hopefully nA ≈ `) and s small
Special kind of randomness extractor (complexity and cryptography)
Want efficient Py and P−1

y

Adapting [Guruswami, Umans, Vadhan, 2009]

Theorem

∃ efficient strong perm. extractor with log s = O(log(n/ε)) and nA = (1 − δ)`

29/35



Metric uncertainty relations: definition and applications Metric uncertainty relations: constructions

Permutation extractors

Definition (Strong permutation extractor)

P0, . . . , Ps−1 permutations of {0, 1}n

Hmin(X) > `⇒ 1
s

s−1∑

y=0

∆
(

PA
y (X), unif({0, 1}nA)

)
6 ε

PA(x): first nA bits of P(x)

X Py

nA

y

source

≈ε unif
n bits

seed

bits

nB

bits

for most y

Remarks:
Has to work for any X
Want nA large (hopefully nA ≈ `) and s small
Special kind of randomness extractor (complexity and cryptography)
Want efficient Py and P−1

y

Adapting [Guruswami, Umans, Vadhan, 2009]

Theorem

∃ efficient strong perm. extractor with log s = O(log(n/ε)) and nA = (1 − δ)`

29/35



Metric uncertainty relations: definition and applications Metric uncertainty relations: constructions

Permutation extractors

Definition (Strong permutation extractor)

P0, . . . , Ps−1 permutations of {0, 1}n

Hmin(X) > `⇒ 1
s

s−1∑

y=0

∆
(

PA
y (X), unif({0, 1}nA)

)
6 ε

PA(x): first nA bits of P(x)

X Py

nA

y

source

≈ε unif
n bits

seed

bits

nB

bits

for most y

Remarks:
Has to work for any X
Want nA large (hopefully nA ≈ `) and s small
Special kind of randomness extractor (complexity and cryptography)
Want efficient Py and P−1

y

Adapting [Guruswami, Umans, Vadhan, 2009]

Theorem

∃ efficient strong perm. extractor with log s = O(log(n/ε)) and nA = (1 − δ)`

29/35



Metric uncertainty relations: definition and applications Metric uncertainty relations: constructions

Permutation extractors

Definition (Strong permutation extractor)

P0, . . . , Ps−1 permutations of {0, 1}n

Hmin(X) > `⇒ 1
s

s−1∑

y=0

∆
(

PA
y (X), unif({0, 1}nA)

)
6 ε

PA(x): first nA bits of P(x)

X Py

nA

y

source

≈ε unif
n bits

seed

bits

nB

bits

for most y

Remarks:
Has to work for any X
Want nA large (hopefully nA ≈ `) and s small
Special kind of randomness extractor (complexity and cryptography)
Want efficient Py and P−1

y

Adapting [Guruswami, Umans, Vadhan, 2009]

Theorem

∃ efficient strong perm. extractor with log s = O(log(n/ε)) and nA = (1 − δ)`

29/35



Metric uncertainty relations: definition and applications Metric uncertainty relations: constructions

Putting things together

|ψ〉

B

A

Vj Py

Vj|ψ〉

PyVj|ψ〉

for most j for most j and y
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Putting things together

|ψ〉

B1

A1

Vj Py

Vj|ψ〉

PyVj|ψ〉

for most j for most j and y

A2

B2

Vj2 Py2

A
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Putting things together

|ψ〉

B1

A1

Vj Py

Vj|ψ〉

PyVj|ψ〉

A2

B2

Vj2 Py2

A

Uk=(j,y,j2,y2)
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Parameters of the metric uncertainty relation

Theorem (Efficient MURs: key optimized)

∃U0, . . . , Ut−1 with log t = cδ log(n/ε) and nA = (1 − δ)n

For all |ψ〉, 1
t

t−1∑

k=0

∆
(

pA
Uk|ψ〉, unif({0, 1}nA)

)
6 ε

U0, . . . , Ut−1 have quantum circuits of size O(n polylog(n/ε))

Theorem (Efficient MURs: A system maximized)

∃U0, . . . , Ut−1 with log t = c log2(n/ε) and nA = n − O(log(1/ε) + log log n)

For all |ψ〉, 1
t

t−1∑

k=0

∆
(

pA
Uk|ψ〉, unif({0, 1}nA)

)
6 ε

U0, . . . , Ut−1 have quantum circuits of size O(n polylog(n/ε))
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Summary

Inspired by definitions and results in asymptotic geometric analysis:

Define metric uncertainty relations

Prove random bases satisfy URs with better params

Construct efficient metric URs

First efficient strong information locking schemes

One of the schemes uses only Hadamard gates and classical
computation

Quantum equality testing

Other results in paper:

Quantum hiding fingerprint [Gavinsky, Ito, 2010]
String commitment protocol [Buhrman, Christandl, Hayden, Lo,
Wehner, 2006]
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Open questions

Other cryptographic applications? Bounded/noisy storage
model?

Explicit constructions of UR matching probabilistic argument?

Existence results of UR matching lower bounds? Are there
U0, . . . , Ut−1

1
t

t−1∑

k=0

H(pUk|ψ〉) >

(
1 −

1
t

)
n for t > 2?

Thank you!
arXiv:1010.3007

See also arXiv:1011.1612 [Dupuis, Florjancyk, Hayden, Leung, 2010]

Many thanks to Ivan Savov for comments on the presentation
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Extra: Proof of min-entropy uncertainty relation

Lemma (MUBs define min-entropy uncertainty relations)

For “most” values of j, there exists qj s.t. ∆
(

pVj|ψ〉 , qj

)
6 ε and qj(x) / 2−n/2

Proof:

~v =

 V0
...

Vr−1

 |ψ〉 ∈ Cr2n
~vj,x = 〈x|Vj|ψ〉 V =

 V0
...

Vr−1

 ∈ Cr2n×2n

1 ~v is spread: for any |S| 6 2n/2, ‖~vS‖2
2 6

2
r ‖~v‖2

2

~vS = VS|ψ〉
‖~vS‖2

2 = |〈ψ|V†SVS|ψ〉| 6 max eigenvalue of V†SVS

V†SVS =


1 〈y|V†j′Vj|x〉 . . .

〈x|V†j Vj′ |y〉
. . .

...
... . . . 1


max eigenvalue of V†SVS 6 1 + |S|2−n/2 ← use MUB here
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 V0
...

Vr−1

 ∈ Cr2n×2n

1 ~v is spread: for any |S| 6 2n/2, ‖~vS‖2
2 6

2
r ‖~v‖2

2

2 S = largest 2n/2 indices of ~v ~wj,x =

{
~vj,x if (j, x) < S
0 if (j, x) ∈ S

3 Define qj(x) = |wj,x|
2 (recall pVj|ψ〉(x) = |~vj,x|

2)

4 For “most” values of j, qj ≈ε distribution
5 |S| · qj(x) 6 ‖~v‖2

2 = r ⇒ qj(x) 6 r2−n/2 �
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Extra: Min-entropy uncertainty relation (generalized)

Approximate MUB: ∀x, y |〈x|VjV
†
j ′ |y〉| 6 1

2γn/2 γ ∈ [0, 1]

Lemma (Min-entropy uncertainty relations)

V0, . . . , Vr−1 define γ-MUBs with r = 1/ε2, for all |ψ〉 ∈ (C2)⊗n

1
r

r−1∑

j=0

Hεmin(pVj|ψ〉) ' (1 − ε)γn/2

Lemma (1/2-MUBs with single qubit unitaries)

There exist Vj ∈
{

Hu1 ⊗Hu2 ⊗ · · · ⊗Hun : ui ∈ {0, 1}
}

for j ∈ [t]
that define 1/2-MUBs

H: transforms + to ×
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