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Encryption of a classical message

Alice Bob
Resources

Shared secret key K €, {0,1}*

Public communication channel >
classical or quantum

Task

X €, {0, 1}™ (message
Transmit X to Bob w0177 g°)

K=& | | ek
X

@ Bob: K known — Decode (X, K) using K to get X
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Encryption of a classical message

Alice Bob
Resources

Shared secret key K €, {0,1}*

Public communication channel >
classical or quantum

Task

X €, {0, 1}™ (message
Transmit X to Bob w0177 g°)

k¢ HlHT

No information about X

l—

@ Bob: K known — Decode £(X, K) using K to get X

@ Eve: Kunknown — &(X,K) gives no information about X
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3/35



Encryption of a classical message

Alice Bob
X €, {0,1}™ (message)

|
e HLHTI‘_K

I X

Task
Transmit X to Bob

K €. {0, 1)

@ Perfect secrecy: X and I are independent
e Must have s > 1 (classical or quantum channels)
e Possible with s = 1: £(X, K) = X & K [One-time pad]
© Approximate secrecy: X and I e-close to independent
o Classical channel: s > n—1fore <1/2

3/35



Encryption of a classical message

Alice Bob
X €, {0,1}™ (message)

|
e HLHTI‘_K

I X

Task
Transmit X to Bob

K e, {0,1}°

@ Perfect secrecy: X and I are independent
e Must have s > 1 (classical or quantum channels)
e Possible with s = 1: £(X, K) = X & K [One-time pad]
© Approximate secrecy: X and I e-close to independent

o Classical channel: s > n—1fore <1/2
e Quantum channel:

3/35



Encryption of a classical message

Alice Bob
X €, {0,1}™ (message)

|
e HLHTI‘_K

I X

Task
Transmit X to Bob

K e, {0,1}°

@ Perfect secrecy: X and I are independent
e Must have s > 1 (classical or quantum channels)
e Possible with s = 1: £(X, K) = X & K [One-time pad]
© Approximate secrecy: X and I e-close to independent

o Classical channel: s > n—1fore <1/2
e Quantum channel:

There exists €, D with s = 3log(1/¢€)

3/35



Encryption of a classical message

Alice Bob
X €, {0,1}™ (message)

|
e HLHTI‘_K

I X

Task
Transmit X to Bob

K €. {0, 1)

@ Perfect secrecy: X and I are independent
e Must have s > 1 (classical or quantum channels)
e Possible with s = 1: £(X, K) = X & K [One-time pad]
© Approximate secrecy: X and I e-close to independent

o Classical channel: s > n—1fore <1/2
e Quantum channel:

There exists €, D with s = 3log(1/¢€)

There exists €, D efficient quantum circuits with s = O(log(n/¢€))
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Outline

@ Metric uncertainty relations: definition and applications
@ Definition
@ Application: Encryption
@ Application: Quantum equality testing

© Metric uncertainty relations: constructions
@ Known constructions
@ Metric interpretation
@ Efficient metric uncertainty relation
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Metric uncertainty relations: definition and applications
@0000

Uncertainty relations

Property of:
@ A set of measurements {By, By, ..., B;_1} (bases here)

@ Notational convenience: {By, By, ..., B;_1} + {Uo, Uy, ..., U;_1}
where Uy : By — {|x) }xeq01yr fixed computational basis

Measure By <= apply Uy and measure {|x)}ye0,1)r
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Metric uncertainty relations: definition and applications

[ Jelelele}

Uncertainty relations

Property of:
@ A set of measurements {By, By, ..., B;_1} (bases here)

@ Notational convenience: {By, By, ..., B;_1} + {Uo, Uy, ..., U;_1}
where Uy : By — {|x) }xeq01yr fixed computational basis

Measure By <= apply Uy and measure {|x)}ye0,1)r
Expresses:
@ Uncertainty of outcome distributions {pu, ), - - -, pu, 1) } Vb)
@ Measurements “incompatible”

Example: {+, x} + {I,H}

Py =[O, (LI)E] = [, 18P
hb) = «l0) + BI1)
ity = [KOIHRD)P, [(UHIp)P] = [1o5e”, lepl
Incompatibility of 4 and x:
Forall ip), uncertainty(pyy)) + uncertainty(pyy,)) > large
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Metric uncertainty relations: definition and applications
(o] Jelele]

Quantifying uncertainty

t—1

For all ), Z uncertainty (py,|yy) > large
k=0
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Metric uncertainty relations: definition and applications
(o] Jelele]

Quantifying uncertainty

-1
For all ), Z H(pu,yp)) > large
k=0

Uncertainty:
e Entropy H(-)
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Metric uncertainty relations: definition and applications
(o] Jelele]

Quantifying uncertainty

t—1

For all i), Z A(puy ), unif) < small
k=0

Uncertainty:
e Entropy H(-)

@ Closeness to uniform A(-, unif)
(the smaller, the more uncertain)

A(p,q) def % 2 xex Ip(x) —g(x)| total variation distance
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Metric uncertainty relations: definition and applications
[e]e] Tele]

Metric uncertainty relations

Recap of definitions:

Py (%) = | (x| U ) P p)H U < EPuw

Alp,q) & % D e Ip(x) —q(x)| total variation distance

Definition (Metric uncertainty relation)

{Uy, ..., U; 1} acting on (C2)%"

For all hp) € (C*)®" A(puy )y, unif({0,1}")) < e
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Metric uncertainty relations: definition and applications
[e]e] Tele]

Metric uncertainty relations

Recap of definitions:

B
P @ & Socups Mt ePu)e b)) U]
| KA
— A Pudw)
p.q oo 1Y cex Ip(x) —gq(x)| total variation distance

Definition (Metric uncertainty relation)

{Uo, ..., U;1} acting on (C*)®" = A ® B with A = (C*)®"4 and B = (C?)®"s

t—1

For all ) € (C?)&" % 5 A(p{}kw),unif({o, 1}"A)) <e

k=0

Intuition: V[), for most values of k, A (Pi\lkhb)' unif({0, 1}"4 )) Se
Objectives: t, € small and ny large
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uncertainty relations: definition and applications
[e]e]e] le]

Metric and entropic uncertainty relations

Entropic uncertainty relations
Use (Shannon) entropy [Bialynicki-Birula, Mycielski, 1975; Deutsch, 1983]

Definition (Metric uncertainty relation)

t—1

A (pfy gy unif(0,11)) < e
0

For all [\p) € (€?)®"

| =

,v
I

H(pup)) > Hply ) recall pfi (@) = Y pu,yy(a,b)
b
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Metric uncertainty relations: definition and applications
[e]e]e] le]

Metric and entropic uncertainty relations

Entropic uncertainty relations
Use (Shannon) entropy [Bialynicki-Birula, Mycielski, 1975; Deutsch, 1983]

Definition (Metric uncertainty relation)

t—1

A (pfy gy unif(0,11)) < e
0

For all [\p) € (€?)®"

| =

»
Il

H(pup)) > Hply ) recall pfi (@) = Y pu,yy(a,b)
b

Proposition (Metric UR = Entropic UR)

Uy, ..., U define an e-metric UR, then

.
|

1

For all ) € (C*)®" H(pu, ) > (1 —2€)na —m(e)

| =

>r
II
o

Proof: Fannes’ inequality m]
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Metric uncertainty relations: definition and applications
0000e

Metric uncertainty relations: parameters

Theorem (Metric uncertainty relations)

Uy, ..., U1 acting on (C*)*" = A ® B with

log t na
Non-explicit 3log(1/¢€) n—2log(1/¢€)
Efficient O(log(n/e€)) 0.99n

Efficient O(log2(n/e)) n— O(log(n/e))

t—1

for all ) %ZA(pﬁklw,uniﬂ{O, 1}"A)) <e

k=0

) Uk .
| /7< :pﬁkhm %e unlf({O, 1}11;\)

for most values of k
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Metric uncertainty relations: definition and applications
@00000

Encryption of classical messages

Definition (Locking scheme)
Message X €, {0,1}", key K €, {0,1F (think s < n)

€ is e-locking scheme if:

Knowing K, can determine X using (X, K) X %

Not knowing K, for any measurement whose (\
outcomeisI:  A(pxy,px X p1) < € &

11/35



Metric uncertainty relations nition and applications

O@0000

Composability

'HAEL A.NIELSEN
AND ISAAC L.CHUANG

A QKD protocol is defined as being secure if, for any security parameters s > 0
and £ > 0 chosen by Alice and Bob, and for any eavesdropping strategy, either the
scheme aborts, or it succeeds with probability at least 1 — O(2~*), and guarantees

that Eve’s mutual information with the final key is less than 2-¢. The key string
must also be essentially random.
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Composability

A QKD protocol is defined as being secure if, for any security parameters s > 0
and £ > 0 chosen by Alice and Bob, and for any eavesdropping strategy, either the
scheme aborts, or it succeeds with probability at least 1 — O(2~*), and guarantees
that Eve’s mutual information with the final key is less than 2-¢. The key string
must also be essentially random.

[AEL A.NIELSEN
AND ISAAC L.CHUANG

2.2.1 Standard security definitions are not universal

Unfortunately, many security definitions that are commonly used in quan-

tum eryptography are not universal. For instance, the security of the key S

Quantum Key Distribution generated by a QKD scheme is typically defined in terms of the mutual infor-

mation I(S; W) between § and the classical outcome W of a measurement.

of the adversary’s system (see, e.g., [LC99L[SPO0, INCO0, (GL03, LCAD5| and

A dissertation submitted to also the discussion in [BOHLT05] and [RK05]). Formally, § is said to be
secure if, for some small £,

Security of

SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH

maxI(5;W) <e. (2:5)

for the degreo of )
tor of Natural Scionces where the maximum ranges over all measurements on the adversary’s system
with output W. it i

however,_ not_guarantee that the key S can safely be used in applications,

presented by Roughly speaking, the reason for this flaw is that criterion (2.5) does not

account for the fact that an adversary might wait with the measurement

Renato Renner of her system until she learns parts of the key. (We also refer to [RK03)
Dipl. Phys. ETH ‘7 v v

Not necessarily composable!

[Ben-Or, Horodecki, Leung, Mayers, Oppenheim, 2005; Konig, Renner, Bariska, Maurer, 2007]
12/35



Metric uncertainty relations: definition and applications
[e]e] lelele)

Information locking: History

[DiVincenzo, Horodecki, Leung, Smolin, Terhal, 2004]
@ X ¢, {0,1}" (message) and K €, {0, 1} (key)
@ IfK=0,E&(x,0) =x)
@ IfK=1,¢&(x,1) = H®"|x)

Knowing K, can determine X X %
Without knowing K, for any measurement whose outcome is I: (\/
I(X;I) <n/2 @

One bit of information (K) can unlock 5 bits about X hidden in the quantum
system (X, K)
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Information locking: History

[DiVincenzo, Horodecki, Leung, Smolin, Terhal, 2004]
@ X ¢, {0,1}" (message) and K €, {0, 1} (key)
@ IfK=0,E&(x,0) =x)
@ IfK=1,¢&(x,1) = H®"|x)

Knowing K, can determine X X %
Without knowing K, for any measurement whose outcome is I: (\/
I(X;I) <n/2 @

One bit of information (K) can unlock 5 bits about X hidden in the quantum
system (X, K)

Encoding in random bases

@ [Hayden, Leung, Shor, Winter, 2004] I(X;I) < 3 with K € {0, 1}4logn

@ [Dupuis, Florjanczyk, Hayden, Leung, 2010] I(X;I) < e with
K € {0,1}OUog(/€)) and stronger definition
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Metric uncertainty relations: definition and applications
[e]e]e] lele)

Locking scheme from a metric uncertainty relation

{Uy} satisfies metric uncertainty relation
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Metric uncertainty relations: definition and applications
[e]e]e] lele)

Locking scheme from a metric uncertainty relation

{Uy} satisfies metric uncertainty relation

Encoding
+—

B
— % Zeg, {0, 1"e
u Private randomness (not shared)
K

&(X,K) —
—  *— Xe& {0 1™
I Message
K ey [t]
Key
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Metric uncertainty relations: definition and applications
[e]e]e] lele)

Locking scheme from a metric uncertainty relation

{Uy} satisfies metric uncertainty relation

Encoding Decoding
—_— e
B

B
Zc,. {01 —® — ___1
Private randomness (not shared) u'l_ u \ "/
— E(X,K) =—— — UK

A
X €, {0, 1} —3 — — X

Message | |

K ey [t]
Key

14/35



Metric uncertainty relations: definition and applications
0000e0

Locking scheme from a metric UR: proof

Encodin
Fora €{0,1Y* and k € [#] —
5 Z e, {0,1}ns —>l T
]I Private randomness (not shared) u (X K
<’€a,k=uT aal* o — | U K[ e
( ) k | >< e np k X €, {0,1)"A — 2
Message K Elu "
Key
@ Can assume measurement {&;le;}e;|};
@ Outcome I
@ Unknown K:
= B
PX=al=i}== A (a) )~ Uy
t %puk\EJ A A ka\\w
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Metric uncertainty relations: definition and applications
0000e0

Locking scheme from a metric UR: proof

Fora € {O, 1}71,4 and k € [t] Encoding

B
Z e, {0, 1} —» —

]IB Private randomness (not shared) u]‘ B
8(51, k) = U,:r <|a><a|A ® 2B> uk N K[ XK

" X € {0,101 —o 21
Message X E|u il
Key
@ Can assume measurement {&;le;}e;|};
@ Outcome I
@ Unknown K:
t—1 B
PX =all =i} = Zpuk\e W U,
v P

By definition of metric UR: A( Zk 0 Pu ny unif({0, 1} )) <e
= A(pxj=i, unif({0,1}")) < e for any i

A
Pl i)

15/35



Metric uncertainty relations: definition and applications
00000e

Parameters of locking scheme

There exists e-locking schemes

Bitsof key ~ Qubits of E(x, k)

Non-explicit ~ 5log(1/€) n
Efficient O(log(n/€)) 1.01n
Efficient O(logz(n/e)) n
l H Inf. leakage [ Key [ Ciphertext [ Efficient ? ‘
[DHLST04] n/2 1 n yes
[HLSW04] 3 4log(n) n no
[DFHL10] en 2log(n/€?) n no
I en 5log(1/€) n no
II en O(log(n/€)) 1.01n yes
11T en O(logz(n/e)) n yes

Note: Can take e =n/n 16/35



Metric uncertainty relations: definition and applications
@00

Another application: Quantum equality testing

Quantum identification or approximate measurement simulation

Alice Bob
Inputs [p) € (C2)em description of |¢) € (€)™ Relaxation of quan-
Ouput ves with prob [(bId)F + e tum info transmission
~o with prob 1 — [(}|d)? + e [Winter, 2004]
Obyjective Minimize quantum communication
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Metric uncertainty relations inition and applications
@00

Another application: Quantum equality testing

Quantum identification or approximate measurement simulation

Alice Bob
Inputs W) € (C2)°m description of |¢) € (C*)®™ Relaxation of quan-
Ouput ves with prob [(bI)[ + e tum info transmission
No with prob 1 — [(Y|d)? + € [Winter, 2004]
Objective Minimize quantum communication
Classical equality testing or identification
Alice Bob
Inputs x €{0,1}™ ye{0,1}™
Ouput vEs with prob 1, _,, + € Communication com-
. plexity EQuaLITY
No with prob 1y & €
Objective Minimize classical communication

Remark: Communication is one way
17/35



Metric uncertainty relations: definition and applications
(o] le}

Quantum equality testing

Alice Bob
Inputs ) € (C2)®n description of |§) € (C2)®™
Ouput yEs with prob [(Y|d)]> £ €
No with prob 1 — [(}|d)> + e
Resource quantum communication

@ Optimal quantum communication ~ /2 qubits [Winter, 2004]
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Quantum equality testing

Alice Bob
Inputs ) € (C2)®n description of |§) € (C2)®™
Ouput yEs with prob [(Y|d)]> £ €
No with prob 1 — [(}|d)> + e
Resource quantum communication

@ Optimal quantum communication ~ /2 qubits [Winter, 2004]
@ With free classical communication: o(n) qubits [Hayden, Winter, 2010]

@ Remark: classical communication alone is useless

Theorem (Quantum equality testing)

Using free classical communication
@ There exists a protocol using O(log(1/€)) qubits communication

@ There exists an efficient protocol using O(logz(n /€)) qubits communication
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(o] le}

Quantum equality testing

Alice Bob
Inputs ) € (C2)®n description of |§) € (C2)®™
Ouput yEs with prob [(Y|d)]> £ €
No with prob 1 — [(}|d)> + e
Resource quantum communication

@ Optimal quantum communication ~ /2 qubits [Winter, 2004]
@ With free classical communication: o(n) qubits [Hayden, Winter, 2010]

@ Remark: classical communication alone is useless

Theorem (Quantum equality testing)

Using free classical communication
@ There exists a protocol using O(log(1/€)) qubits communication

@ There exists an efficient protocol using O(logz(n /€)) qubits communication

Classical equality testing:
@ With free shared randomness: O(log(1/¢€)) bits communication

@ Public-coin randomized comm. complexity of eQuaLity is O(log(1/€)) .



Metric uncertainty relations: definition and applications
[o]e] ]

From metric UR to quantum equality testing

1 K log t qubits
LYk :

uantum comm.
B ng qubits Q

) — Uy

A /7< na bits  Classical comm.

— Output

Quantum communication: logt + ng qubits
Classical communication: n4 bits

Classical description of |¢)
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Metric uncertainty relations: definition and applications
[o]e] ]

From metric UR to quantum equality testing

1 K log t qubits
Vi Zk Ik =
B Quantum comm. Dy = Output

ng qubits

) — Uy

A /7< na bits  Classical comm.

Classical description of |¢)

Quantum communication: logt + ng qubits
Classical communication: n4 bits

Proof: via duality between

forgetfulness and  geometry preservation [Hayden, Winter, 2010]
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Metric uncertainty relations: definition and applications
[o]e] ]

From metric UR to quantum equality testing

1 K log t qubits
i kK

B ng qubits

) — Uy

A /7< na bits

Quantum communication: log ¢ + np qubits
Classical communication: n4 bits

Proof: via duality between

forgetfulness and  geometry preservation

K
[
B
QID code
Uy
A
E

{o— Forgetful

[Hayden, Winter, 2010]
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Outline

© Metric uncertainty relations: constructions
@ Known constructions
@ Metric interpretation
@ Efficient metric uncertainty relation
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Metric uncertainty relations: constructions
000

Entropic URs with t = 2 measurements

Rectilinear and diagonal basis

e [, H®"
1

1
5 (H(ppy)) +Hippeny))) = oM

e Uy, Uy mutually unbiased: Vx,y € {0, 1}" |(x[U LIIIy)I2 = zin
1
2

Recall: py,) (x) = [(x{p)?

n [Maassen, Uffink, 1989]

N —

(H(puy ) +Hipuyy)) =

The factor 1/2 is optimal for t = 2 measurements

21/35



Metric uncertainty relations: constructions
000

Entropic URs with t = 2 measurements

Rectilinear and diagonal basis

e [, H®"
1

1
5 (H(ppy)) +Hippeny))) = oM

e Uy, Uy mutually unbiased: Vx,y € {0, 1}" |(x[U LIIIy)I2 = zin
1
2

Recall: py,) (x) = [(x{p)?

(H(pu()\ll)>) + H(PLHIIM)) = =n [Maassen, Uffink, 1989]

N —

The factor 1/2 is optimal for t = 2 measurements

To increase the lower bound, need ¢t > 2 measurements

21/35



Metric uncertainty relations: constructions
o] le}

Entropic URs with ¢t > 2 measurements

1

t—1
Want: n é H(py, ) = hi(t) for all ) € (C*)®"

with h(t) > n/2 large
Natural candidate: Take t mutually unbiased bases (MUBs)

22/35
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Entropic URs with ¢t > 2 measurements

1

t—1
Want: n é H(py, ) = hi(t) for all ) € (C*)®"

with h(t) > n/2 large
Natural candidate: Take t mutually unbiased bases (MUBs)

Definition (Mutually unbiased bases)

Uy, ..., U;—1 define MUBEs if for all x, iy € {0,1}" and all k # £’

1
|<XIUkUT/Iy>| < n/2
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Definition (Mutually unbiased bases)

Uy, ..., U;—1 define MUBEs if for all x, iy € {0,1}" and all k # £’

1
|<XIUkUT/Iy>| < n/2

@ Fort =2"+1 (full set of MUBs):
h(t) > log(2" +1) — 1 > n — 1 [Sanchez, 1993; Ivanovic, 1994]
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Entropic URs with ¢t > 2 measurements

1

t—1
Want: n é H(py, ) = hi(t) for all ) € (C*)®"

with h(t) > n/2 large
Natural candidate: Take t mutually unbiased bases (MUBs)

Definition (Mutually unbiased bases)

Uy, ..., U;—1 define MUBEs if for all x, iy € {0,1}" and all k # £’

1
|<XIUkUT/Iy>| < n/2

@ Fort =2"+1 (full set of MUBs):
h(t) > log(2" +1) — 1 > n — 1 [Sanchez, 1993; Ivanovic, 1994]

@ For t < 2"/2, general MUBs do not work well:
3t MUBs with h(t) ~ n/2 [Ballester and Wehner, 2007; Ambainis, 2009]

22/35



Metric uncertainty relations: constructions
[e]e] ]

Entropic URs with ¢t > 2 measurements

t—1

H(py, ) = h(t)  forallhp) € (C*)®"
0

Want:

| =

o~
Il

with h(t) > n/2 large

Other candidate: random bases [Hayden, Leung, Shor, Winter, 2004]
For t = n*, there exists Uy, ..., U;_1

—_

t—1
n Z H( Pukhw -3
k=0

Remark: Not explicit

23/35



Metric uncertainty relations: constructions
[ ele}

Metric URs: metric interpretation

Definition (Metric uncertainty relation)

—1

A(pﬁklw,unif({o,l}”f‘)) <e
k=0

-

For all i) € (C*)®" %

In terms of fidelity
l—e<iy,F (pﬁk|w>,unif({0, l}m))

24/35
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Metric URs: metric interpretation

Definition (Metric uncertainty relation)

—1

A(pﬁklw,unif({o,l}”f‘)) <e
k=0

-

For all i) € (C*)®" %

In terms of fidelity
1— € Zk (Pﬁkwyunif({o/ 1}71,4 ) -t Zk Zue{O 1 <a‘uk|1~l)>|
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Metric uncertainty relations: constructions
[ ele}

Metric URs: metric interpretation
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-

—1

A(ply gy, wnif((0, 1)) < e
k=0

For all i) € (C*)®" %

In terms of fidelity

€< XiF (Pﬁkw)/unif({or HM)) =7 Xa V2o al BIUKID) P
Define Vi) — Z k) @ Ukhp)

Forall [§) € (€)%, VB2 > IVIW) e > (1 ) VET)]l
V is a low-distortion embedding (C%', &) — (C'?', (&)
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{, — {; embeddings

Dvoretzky’s theorem:
For any normed space (IR?, ||-||), there is alarge subspace ||-|| = ||||2
[Dvoretzky, 1961; Milman, 1971; Milman and Schechtman, 1986;...]

Most common proof uses probabilistic method
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{, — {; embeddings

Dvoretzky’s theorem:
For any normed space (IR?, ||-||), there is alarge subspace ||-|| = ||||2
[Dvoretzky, 1961; Milman, 1971; Milman and Schechtman, 1986;...]

Most common proof uses probabilistic method

For {; norm
] EXpliCit constructions [Indyk, 2007; Guruswami, Lee, Razborov, 2009;...]

@ Applications: high-dimensional nearest neighbour search and
compressed sensing

For Schatten p-norms [Aubrun, Szarek, Werner, 2010]

@ Counterexample additivity minimum output entropy [Hayden and
Winter 2008; Hastings, 2009]
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ooe

Metric uncertainty relations: existence

Theorem (Metric uncertainty relations)

I Uy, ..., U1 acting on (C*)*" = A ® B with
logt =3log(1/€) and ng =n—2log(1l/e)

t—1

for all ) % Z A (Pl/}klw' unif({0, 1} )) <e.

k=0

Proof: Probabilistic argument, Uy, ..., U;—; at random [Milman, 1971]
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Metric uncertainty relations: constructions
[ leJele]e]

Efficient metric UR: Structure of the construction

Use ideas of explicit {, into {; embedding of [indyk, 2007]

Two ingredients:

@ Min-entropy uncertainty relation (mutually unbiased
bases)

@ Permutation extractors
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Min-entropy uncertainty relation

Lemma (MUBs define min-entropy uncertainty relations)

Vo, ..., Vy_1 define MUBs with r = 1/€2, for all hp) € (C?)®"

r—1

7 Z Hiin (pvigy) R (1—€)n/2
=0

Hpin(p) = —log max,cx p(x)

Hremn(p) = maXgA(pg)<e Hmin(q)
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(o] Jelele]

Min-entropy uncertainty relation

Lemma (MUBs define min-entropy uncertainty relations)

Vo, ..., Vy_1 define MUBs with r = 1/€2, for all hp) € (C?)®"

r—1

7 Z Hiin (pvigy) R (1—€)n/2
=0

Hiin(p) = —log maxyex p(x)
Hremn(p) = maXgA(pg)<e Hmin(q)
Remarks

o Interpret as: for most values of j, Hy, (pv,y)) R (1 —€)n/2

(*] Min—entropy UR of [Damgaard, Fehr, Renner, Salvail, Schaffner, 2007] uses
r = 2" bases

@ Rate 1/2 is best possible
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00e00

Permutation extractors

Definition (Strong permutation extractor)

Py, ...,Ps_1 permutations of {0, 1}" .
—— =~ unif
n bits P, bt for most y
Hmin (X) > 4 source E
bits
Y seed
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@ Has to work for any X
@ Want n, large (hopefully n, ~ {) and s small
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@ Want efficient P, and P,
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00e00

Permutation extractors

Definition (Strong permutation extractor)

Py, ..., Ps 1 permutations of {0, 1}" N
L™ anif
X wis Py bits for J:xilty
Homin 2t= Z A( ), unif ({0, 1}nA)) < € source | ne
bits
PA(x): first nu bits of P(x) Y seed

Remarks:
@ Has to work for any X
@ Want n, large (hopefully n, ~ {) and s small
@ Special kind of randomness extractor (complexity and cryptography)
@ Want efficient P, and P,

Adapting [Guruswami, Umans, Vadhan, 2009]

3 efficient strong perm. extractor with logs = O(log(n/e)) and ny = (1 — 8)¢
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Putting things together

Vi)

for most j for mostj and y
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Putting things together

A

Vjhb)

B>
B4 _
\/jZ PHZ AZ
Py
A
Aq
Py V;lb)

UWk—(,y,j2,y2)
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Metric uncertainty relations: constructions

[e]e]e]e] ]

Parameters of the metric uncertainty relation

Theorem (Efficient MURs: key optimized)

Ay, ..., U, with logt = cs log(n/e) and ny = (1 —d)n
For all [, A (Pl unifl(0, 1)) < e

Uy, ..., U;—1 have quantum circuits of size O(n polylog(n/e))

Theorem (Efficient MURs: A system maximized)
Uy, ..., U;— withlogt = clogz(n/e) and ny =n— O(log(1/€) + loglogn)

=il

1 .
Forallih), 5 Y A(pl, unifll0,174)) < e

k=0

Uy, . .., U1 have quantum circuits of size O(n polylog(n/e))
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Summary

Inspired by definitions and results in asymptotic geometric analysis:
@ Define metric uncertainty relations
@ Prove random bases satisfy URs with better params
@ Construct efficient metric URs
@ First efficient strong information locking schemes

e One of the schemes uses only Hadamard gates and classical
computation

@ Quantum equality testing
@ Other results in paper:

@ Quantum hiding fingerprint [Gavinsky, Ito, 2010]
o String commitment protocol [Buhrman, Christandl, Hayden, Lo,
Wehner, 2006]
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Open questions

@ Other cryptographic applications? Bounded/noisy storage
model?

@ Explicit constructions of UR matching probabilistic argument?

@ Existence results of UR matching lower bounds? Are there
uO/ ey utfl

t—1

| =

1
H(py,y)) = (1 - t> n fort>2?

o
Il

0
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Open questions

@ Other cryptographic applications? Bounded/noisy storage
model?

@ Explicit constructions of UR matching probabilistic argument?

@ Existence results of UR matching lower bounds? Are there
uO/ ey utfl

t—1

| =

1
H(py,y)) = (1 - t> n fort>2?

o
Il

0

Thank you!

arXiv:1010.3007

See also arXiv:1011.1612 [Dupuis, Florjancyk, Hayden, Leung, 2010]
Many thanks to Ivan Savov for comments on the presentation
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Extra: Proof of min-entropy uncertainty relation

Lemma (MUBs define min-entropy uncertainty relations)

For “most” values of j, there exists q; s.t. A (ijwu»)/‘?/) < eand gi(x) 5 2—1/2

Proof:
— Vo Vo
i=| @ |[WeC”  Gu=@Vi) V=| & |eC™¥
Vi1 Vi1
@ dis spread: for any S| < 22, ||Ts |3 < 2|73
o Us = Vslhp)

o [|Ts]3 = [(WIVIVsip) < max eigenvalue of ViV
1 Vv
ViVs = | V] Vily)
: 1

e max eigenvalue of V; Vs < 1415272 « use MUB here
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Extra: Min-entropy uncertainty relation (generalized)

Approximate MUB: Vx,y |<x|VjV]T/\y>| < zw}ﬁ v € 0,1]

Lemma (Min-entropy uncertainty relations)

Vo, ..., V,_1 define y-MUBs with r = 1/¢€2, for all \b) € (C?)®"

r—1

1

~ ) Hiulpyw) 2 (1—e)yn/2
j=0
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Extra: Min-entropy uncertainty relation (generalized)

Approximate MUB: Vx,y |<x|VjV]T/\y>| < zw}T v € 0,1]

Lemma (Min-entropy uncertainty relations)

Vo, ..., V,_1 define y-MUBs with r = 1/¢€2, for all \b) € (C?)®"

r—1

1

P Z Hrin(pvijp)) ® (1 —€)yn/2
i=0

Lemma (1/2-MUBs with single qubit unitaries)

There exist V; € {H“l QH2 ®---®@H" :u; €{0, 1}}f0rj e [t]
that define 1/2-MUBs

H: transforms + to x
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