(Non-)Contextuality of Physical Theories as an Axiom

Simone Severini University College London

Â

Adán Cabello Andreas Winter arXiv:1010.2163v1 [quant-ph]

Plan

1. Introduction:

non-contextuality

2. <u>Results</u>:

a general framework to study non-contextuality; non-contextuality and non-locality

3. <u>Open problems:</u>

theoretical; applied; a complexity perspective.

1. Introduction:

non-contextuality for

- 1. classical theories
- 2. non-signaling theories
- 3. quantum theory

"measuring" means

"to ask questions to a system"

what is your velocity?

what is your velocity?

what is your angular momentum?

what is your velocity?

what is your angular momentum?

what is the colour of your eyes?

what is your velocity?

what is your angular momentum?

what is the colour of your eyes?

is your entropy 5 bits?

what is your velocity?

what is your angular momentum?

what is the colour of your eyes?

is your entropy 5 bits?

Question 1

1. Introduction: non-contextuality

Question 1

<u>context</u>:

a set of **mutually compatible** questions

compatibility:

Question 1: Is the colour red? Answer:

Yes

Question 2:

What is the suit? **Answer:** Diamonds

answers

do not depend on contexts Context 1

non-contextuality:

answers do not depend on contexts

Context 2

Question 2: Is Y true? Answer: Yes

non-contextuality:

answers do not depend on contexts Question 3: Is Z true? Answer:

No

<u>exclusiveness</u>:

answers to adjacent questions are **not both 1**

the answers 1 have expectation ≤ 2 if non-contextual and exclusive

classical theories

give expectation ≤ 2

probabilities of answers **do not** depend on contexts

Context 1

Question 1: Question 2: Is Y true? Is X true? Pr[answer Yes] = bPr[answer Yes] = a

probabilities of answers **do not** depend on contexts

probabilities of answers **do not** depend on contexts

Question 2: Is Y true? Pr[answer Yes] = b**Question 3:** Is Z true? Pr[answer Yes] = c

Context 2

<u>exclusiveness</u>:

answers to adjacent questions are **not both 1**

Context 1

<u>exclusiveness</u>:

answers to adjacent questions are **not both 1**

non-signaling theories* give expectation ≤ 2.5

*also called "general probabilistic theories"

axiomatically:

classical theories give expectation ≤ 2

non-signaling theories give expectation ≤ 2.5

axiomatically:

classical theories give expectation ≤ 2

quantum theory

give expectation \leq ?

non-signaling theories give expectation ≤ 2.5

adjacent questions are **not both 1**

Context *i*

$$\langle v_i | v_{i+1 \mod(5)} \rangle = 0$$

compatibility

 $\left|\left\langle \psi | \mathbf{v}_i \right\rangle\right|^2 = \frac{1}{\sqrt{5}}$

 $\sum_{i=1}^{5} \left| \langle \psi | \mathbf{v}_{i} \rangle \right|^{2} = \sqrt{5}$

1. Introduction: non-contextuality

classical theories* give expectation ≤ 2

quantum theory** gives expectation $\leq \sqrt{5} \approx 2.23$

non-signaling theories* give expectation ≤ 2.5

*Wright (1978); **Klyachko et al. (2008)

1. Introduction: non-contextuality

2. <u>Results</u>:

- a general framework
- to study non-contextuality:
- 1. general compatibility structures
- 2. perfectness
- 3. non-locality

every graph/hypergraph is a compatibility structure

every graph/hypergraph is a compatibility structure

every graph/hypergraph is a compatibility structure

Let Γ be a compatibility structure, seen as a hypergraph. Let G be the graph obtained by connecting contextual questions. The **maximum expectation values** for exclusive answers are

$\alpha(\mathbf{G}) \leq \vartheta(\mathbf{G}) \leq \alpha^{\mathsf{FP}}(\Gamma)$

for classical, quantum, and non-signaling theories, respectively; where $\alpha(G)$ is the independence number, $\vartheta(G)$ is the Lovász ϑ -function, and $\alpha^{FP}(\Gamma)$ is the fractional packing number.

Independence number $\alpha(G)$

Is the maximum number of mutually non-adjacent vertices in a graph *G*.

$$\alpha(C_5)=2$$

NP-complete; hard to approximate

Independence number $\alpha(G)$

Is the maximum number of mutually non-adjacent vertices in a graph *G*.

$$\alpha(C_5)=2$$

NP-complete; hard to approximate

classical theories give expectation ≤ 2

Lovász ϑ -function $\vartheta(G)$

An <u>orthogonal representation</u> of *G* is a set of unit vectors associated to the vertices such that two vectors are orthogonal if the corresponding vertices are adjacent:

$$\vartheta(\mathbf{G}) := \max_{\text{orth. repr.}} \sum_{i=1}^{n} \left| \langle \psi | \mathbf{v}_{i} \rangle \right|^{2}$$

$$\vartheta(\mathbf{C}_5) = \sqrt{5}$$

semidefinite program*

Lovász ϑ -function $\vartheta(G)$

An <u>orthogonal representation</u> of *G* is a set of unit vectors associated to the vertices such that two vectors are orthogonal if the corresponding vertices are adjacent:

$$\vartheta(\mathbf{G}) := \max_{\text{orth. repr.}} \sum_{i=1}^{n} \left| \langle \psi | \mathbf{v}_{i} \rangle \right|^{2}$$

$$\vartheta(\mathbf{C}_5) = \sqrt{5}$$

semidefinite program*

quantum theory gives expectation $\leq \sqrt{5}$

*Lovász (1978)

2. <u>Results</u>

Fractional packing number
$$\alpha^{FP}(\Gamma)$$

Let Γ be a compatibility structure, seen as a hypergraph:
 $\alpha^{FP}(\Gamma) = \max \sum_{i} w_{i}$
s.t. $\forall i \ 0 \le w_{i} \le 1$ and $\forall \text{ context } C \in \Gamma$, $\sum_{i \in C} w_{i} \le 1$

$$\alpha^{FP}(C_5) = 5/2$$

linear program

Fractional packing number
$$\alpha^{FP}(\Gamma)$$

Let Γ be a compatibility structure, seen as a hypergraph:
 $\alpha^{FP}(\Gamma) = \max \sum_{i} w_{i}$
s.t. $\forall i \ 0 \le w_{i} \le 1$ and $\forall \text{ context } C \in \Gamma$, $\sum_{i \in C} w_{i} \le 1$

$$\alpha^{FP}(C_5) = 5/2$$

linear program

non-signaling theories give expectation ≤ 2.5

Remark.

$\vartheta(C_5)$ is the max. violation of the **Klyachko-Can-Biniciouglu-Shumovsky (KCBS)** inequality*.

The inequality can be used to detect genuine quantum effects and it is the simplest non-contextual inequality violated by a qutrit (because the orthogonal representation has dimension 3).

Quantum mechanics as a "sandwich theory"*

Let $E_{\rm C} \subset E_{\rm Q} \subset E_{\rm NS}$ be the **convex sets** of the vectors realizing the expectations for classical, quantum, and non-signaling theories, respectively.

Quantum mechanics as a "sandwich theory"*

Let $E_{\rm C} \subset E_{\rm Q} \subset E_{\rm NS}$ be the **convex sets** of the vectors realizing the expectations for classical, quantum, and non-signaling theories, respectively.

Quantum mechanics as a "sandwich theory"*

Let $E_{\rm C} \subset E_{\rm Q} \subset E_{\rm NS}$ be the **convex sets** of the vectors realizing the expectations for classical, quantum, and non-signaling theories, respectively.

membership in E_Q of a vector can be tested with a semidefinite program!

Remark.

Standard result about the Lovász function can be then used to give the max. violation of known inequalities. For example, the max. violation for the *n*-cycle generalization of the KCBS inequality, recently computed in * is

$$\vartheta(\boldsymbol{C}_n) = \frac{n\cos(\pi/n)}{(1 + \cos(\pi/n))}$$

Classicality and perfectness

A graph *G* is **<u>perfect</u>*** if $\alpha(H) = \vartheta(H) = \chi(\overline{H})$ for every induced subgraph *H*. So, perfect graphs are "the most classical ones". For a perfect graph

$$E_{\rm C} = E_{\rm Q} = E_{\rm NS}$$

Whenever $\alpha(G) < \vartheta(G)$ we have a difference between classical theories and quantum mechanics and a "state dependent" proof of the Kochen-Specker theorem**.

The KCBS inequality is based on C_5 which is the smallest non-perfect graph.

*Berge (1961); **where effects sum to unity

Two remarks

1. Many intractable problems are tractable for perfect graphs (*i.e.*, when classical and quantum theories coincide).

2. There are graphs s.t. $\alpha(G)=2$ and $\vartheta(G)=\Omega(n^{1/3})$ (*i.e.*, classical and quantum theories can have arbitrarily large separation)*.

non-contextuality

Observation

Non-local experiments give compatibility structures: compatible questions are the local measurement.

Observation

Non-local experiments give compatibility structures: compatible questions are the local measurement.

Alice

settings $x \in X$ outcomes $a \in A$

settings $y \in Y$ outcomes $b \in B$
Compatibility graph for a non-local experiment

$$G = (V, E) \qquad V = A \times B \times X \times Y$$
$$\{abxy, a'b'x'y\} \in E \text{ iff}$$
$$(x = x' \land a \neq a') \lor (y = y' \land b \neq b')$$
$$[\Gamma \text{ is the hypergraph of all cliques* in } G]$$

*complete subgraphs

compatibility: the observables of

Alice and Bob **commute**.

A classification theorem for correlations

Let Γ be the compatibility hypergraph for a non-local experiment:

$$E_{\rm C}^1(\Gamma) \subset E_{\rm Q}^{\rm id}(\Gamma) \subset E_{\rm Q}^1(\Gamma) \subset E_{\rm NS}^1(\Gamma)$$

are the sets of correlations obtainable by local hidden variables, local quantum measurements on a bipartite state, *idem* but without completeness relation for the measurement, and non-signaling theories, respectively:

$$E_{X=C,Q,NS}^{1}(\Gamma) := E_{X}(\Gamma) \cap \{ \vec{w} : \forall xy \sum_{w_{ab|xy}} w_{ab|xy} = 1 \}$$
$$E_{Q}^{id}(\Gamma) := \{ (w_{ab|xy})_{abxy} : \forall xy \sum_{ab} P_{ab|xy} = id \}$$

<u>Problem</u>: how well E_Q^1 approximates E_Q^{id} ?

*Ito-Kobayashi-Matsumoto (2009)

Clause-Horne-Shimony-Holt (CHSH) inequality*

*Clause-Horne-Shimony-Holt (1969)

constraint:

settings and outcomes: $A = B = X = Y = \{0, 1\}$ $\sum W_{ab|xy}$ $W_{ab|xy}$: $x \cdot y = a \operatorname{XOR} b$

settings and outcomes: $A = B = X = Y = \{0, 1\}$ constraint:

W _{ab|xy} $W_{ab|xy}$: $x \cdot y = a \operatorname{XOR} b$

constraint:

settings and outcomes: $A = B = X = Y = \{0, 1\}$ W_{ab|xy} $W_{ab|xy}$: $x \cdot y = a \operatorname{XOR} b$

settings and outcomes: constraint:

$$A = B = X = Y = \{0,1\}$$
$$\sum_{W_{ab|xy}: x \cdot y = a \text{ XOR } b} W_{ab|xy}$$

1/21/2 1/21/2 1/2 1/21/21/2

 $\alpha(G)=3$

classical max.

$$\alpha^{\rm FP}(\Gamma)=4$$

non-signaling max.

$$\alpha(G)=3$$

classical max.

$$\alpha^{\rm FP}(G) = 4$$

non-signaling max.

it attains the **Tsirelson bound**

$$\vartheta(\mathbf{G}) = 2 + \sqrt{2} \approx 3.4$$

quantum max.

Collins-Gisin inequality (I3322)*

*Collins-Gisin (2004); **Navascués-Acín-Pironio (2008)

3. Open problems:

1. theoretical:

relations to Bell inequalities

2. applied:

loophole-free experiments

3. a complexity perspective: degree of perfectness

"theoretical open problem"

Can any violation of a non-contextual inequality be converted into a (comparably large) violation of a Bell inequality?

"applied open problem"

Can any violation of a non-contextual inequality be converted into a (comparably large) violation of a Bell inequality?

So far, forty years after Bell paper, all Bell experiments have loopholes: are graphs with a large separation between the independence number and the Lovász function good candidates for loophole-free experiments with inefficient detectors?

"complexity open problem"

Can any violation of a non-contextual inequality be converted into a (comparably large) violation of a Bell inequality?

So far, forty years after Bell paper, all Bell experiments have loopholes: are graphs with a large separation between the independence number and the Lovász function good candidates for loophole-free experiments with inefficient detectors?

Perfect graphs have many efficient algorithms that in general are NP-hard. We have shown that compatibility structures from perfect graphs have coincident classical and quantum description. Can we define a notion of parametric complexity according to the classical-quantum gap?

open problems

Can any violation of a non-contextual inequality be converted into a (comparably large) violation of a Bell inequality?

So far, forty years after Bell paper, all Bell experiments have loopholes: are graphs with a large separation between the independence number and the Lovász function good candidates for loophole-free experiments with inefficient detectors?

Perfect graphs have many efficient algorithms that in general are NP-hard. We have shown that compatibility structures from perfect graphs have coincident classical and quantum description. Can we define a notion of parametric complexity according to the classical-quantum gap?

The Lovász function is fundamental in zero-error classical and quantum information theory*. Can we recast the non-contextuality framework into an information theoretic one?

open problems

Can any violation of a non-contextual inequality be converted into a (comparably large) violation of a Bell inequality?

So far, forty years after Bell paper, all Bell experiments have loopholes: are graphs with a large separation between the independence number and the Lovász function good candidates for loophole-free experiments with inefficient detectors?

Perfect graphs have many efficient algorithms that in general are NP-hard. We have shown that compatibility structures from perfect graphs have coincident classical and quantum description. Can we define a notion of parametric complexity according to the classical-quantum gap?

The Lovász function is fundamental in zero-error classical and quantum information theory. Can we recast the non-contextuality framework into an information theoretic one?