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We show that there is of family of inequalities associated to each compatibility structure of a set
of events (a graph), such that the bound for noncontextual theories is given by the independence
number of the graph, and the maximum quantum violation is given by the Lovász ϑ-function of
the graph, which was originally proposed as an upper bound on its Shannon capacity. Probabilis-
tic theories beyond quantum mechanics may have an even larger violation, which is given by the
fractional packing number. We discuss the sets of probability distributions attainable by noncon-
textual, quantum, and generalized models; the latter two are shown to have semidefinite and linear
characterizations, respectively. The implications for Bell inequalities are discussed. In particular,
we show that every Bell inequality can be recast as a noncontextual inequality within this family.

For details and proofs see arXiv:1010.2163 [quant-ph].

Introduction.—Recently, Klyachko et al. (KCBS) [1]
have introduced a noncontextual inequality (i.e., one
satisfied by any noncontextual hidden variable theory),
which is violated by quantum mechanics, and therefore
can be used to detect quantum effects. The simplest
physical system which exhibits quantum features in this
sense is a three-level quantum system or qutrit [2–4]. The
KCBS inequality is the simplest noncontextual inequality
violated by a qutrit. It can adopt two equivalent forms.
Consider 5 yes-no questions Pi (i = 0, . . . , 4) such that
Pj and Pj+1 (with the sum modulo 5) are compatible:
both questions can be jointly asked without mutual dis-
turbance, so, when the questions are repeated, the same
answers are obtained; and exclusive: not both can be
true. One can represent each of these questions as a ver-
tex of a pentagon (i.e., a 5-cycle) where the edges denote
compatibility and exclusiveness. What is the maximum
number of yes answers one can get when asking the 5
questions to a physical system? Clearly, two, because
of the exclusiveness condition [6]. If we denote yes and
no by 1 and 0, respectively, then, even if we ask only
a single question to each one of an identically prepared
collection of systems, and then count the average num-
ber of yes answers corresponding to each question, then
β :=

∑4
i=0〈Pi〉 ≤ 2, if we assume that these answers are

predetermined by a hidden variable theory. This is the
first form of the KCBS inequality. What has β ≤ 2 to do
with noncontextuality? Noncontextual hidden variable
theories are those in which the answer of Pj is indepen-
dent of whether one ask Pj together with Pj−1 (which
is compatible with Pj), or together with Pj+1 (which is
also compatible with Pj). A set of mutually compati-
ble questions is called a context. Since, Pj+1 and Pj−1
are not necessarily compatible, {Pj , Pj−1} is one context
and {Pj , Pj+1} is a different one, and they are not both
contained in a joint context. The assumption is that the
answer to Pj will be the same in both.

Now, let us consider contexts instead of questions, i.e.,

let us ask individual systems not one but two compati-
ble and exclusive questions. In the pentagon, a context
is represented by an edge connecting two vertices, so we
have 5 different contexts. In order to study the correla-
tions between the answers to these questions, it is useful
to transform each question into a dichotomic observable
with possible values −1 (no) or +1 (yes), so when both
questions give the same answer the product of the re-
sults of the observables is +1, but when the answers are
different then the product of the results of the observ-
ables is −1. For instance, this can be done by defining
the observables Ai = 2Pi − 1. Then, inequality β ≤ 2
is equivalent to the noncontextual correlation inequality,
the second form of KCBS, β′ :=

∑4
i=0〈AiAi+1〉 ≥ −3,

which can be derived independently based solely on the
assumption that the observables Ai have noncontextual
results −1 or +1. I.e., we do not need to assume exclu-
siveness to derive it, effectively because the occurrence of
correlation functions 〈AiAi+1〉 implements a penalty for
violating exclusiveness.

For a qutrit, the maximum quantum violation is
βQM =

√
5 ≈ 2.236, which is equivalent to β′QM =

5−4
√

5 ≈ −3.94. The maximum violation occurs for vec-
tors connecting the origin with the vertices of a regular
pentagon. These vectors form an orthonormal represen-
tation of the 5-cycle.

General compatibility structures.—The KCBS inequal-
ity suggests itself a generalization to arbitrary graphs
instead of the 5-cycle. Most generally, Kochen-Specker
(KS) theorems [4] are about the possibility of interpret-
ing a given structure of compatibility of “events,” and
additional constraints such as exclusiveness, in a classi-
cal or nonclassical probabilistic theory. These events are
interpreted as atomic events, each of which can occur in
different contexts. Formally, the events are labelled by
a set V . The set of all valid contexts is a hypergraph Γ,
which is simply a collection of subsets C ⊂ V ; note that
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for hypergraphs of contexts, with each C ∈ Γ, all of the
subsets of C are also valid contexts, and hence part of C.
The interpretation is that there should exist (determinis-
tic) events in a probabilistic model, one Pi for each i ∈ V ,
and for each context C a measurement among whose out-
comes are the Pi (i ∈ C). The events are hence mutually
exclusive, as in the measurement postulated to exist for
some C ∈ Γ, at most one outcome i ∈ C can occur.
For instance, a classical (noncontextual) model would be
a measurable space Ω, with each Pi being the indicator
function of a measurable set (an event, in fact) such that
for all C ∈ Γ,

∑
i∈C Pi ≤ 1 (i.e., the supporting sets of

the Pi should be pairwise disjoint).
In contrast, a quantum model requires a Hilbert space
H and associates projection operators Pi to all i ∈ V ,
such that for all C ∈ Γ,

∑
i∈C Pi ≤ 11 (i.e., the Pi can be

thought of as outcomes in a von Neumann measurement).
Thanks to KS we know that quantum models are

strictly more powerful that classical ones; but they are
still not the most general ones. A generalized model
requires choosing a generalized probabilistic theory in
which the Pi can be interpreted as measurement out-
comes: following [7–11], formally it consists of a real
vector space A of observables, with a distinguished unit
element u ∈ A and a vector space order: the latter is
given by the closed convex cone P ⊂ A of positive ele-
ments containing u in its interior, such that P spans A
and is pointed, meaning that, with the exception of 0, P
is entirely on one side of a hyperplane. For two elements
X,Y ∈ A we then say X ≤ Y if and only if Y −X ∈ P.
(We shall only discuss finite dimensional A, otherwise
there will be additional topological requirements.) The
elements with 0 ≤ E ≤ u are called effects. This struc-
ture is enough to talk about measurements: they are col-
lections of effects (E1, . . . , Ek) such that

∑k
j=1Ej = u.

Now, a generalized model for the hypergraph Γ is the
association of an effect Pi ∈ A to each i ∈ V , such that
each Pi is a sum of normalized extremal effects, and for
all C ∈ Γ,

∑
i∈C Pi ≤ u. The latter condition ensures

that the family (Pi : i ∈ C) can be completed to a mea-

surement, possibly in a larger space Ã ⊃ A. We finally
demand that this can be done such that also u−

∑
i∈C Pi

is a sum of normalized extremal effects.
Notice that in all of the above we never require that

any particular context should be associated to a com-
plete measurement: the conditions only make sure that
each context is a subset of outcomes of a measurement
and that they are mutually exclusive. Thus, unlike the
original KS theorem, it is clear that every context hy-
pergraph Γ has always a classical noncontextual model,
besides possibly quantum and generalized models. This
is where noncontextual inequalities come in: note that
all of the above types of models allow for the choice of a
state (be it a probability density, a quantum density op-
erator, or generalized state), under which all expectation
values 〈Pi〉 make sense, and hence also the expression

β =
∑

i∈V 〈Pi〉. Moreover, all probabilities 〈Pi〉 are inde-
pendent of the context in which Pi occurs, as they depend
only on the effect Pi and the underlying state. Since this
is the condition underlying Gleason’s theorem, we call it
the Gleason property.

We can then ask for the set of all attainable vectors(
〈Pi〉

)
i∈V for given hypergraph Γ, over all models of a

given sort (classical noncontextual, quantum mechanical,
or generalized probabilistic theory) and states within it.
These are evidently convex subsets in [0, 1]V ⊂ RV ; we
denote the sets of noncontextual, quantum and gener-
alized expectations by EC(Γ), EQM(Γ) and EGPT(Γ), re-
spectively. The central task of the present theory is to
characterize these convex sets and to compare them for
various Γ. This is because a point ~p ∈ EX(Γ) in any
of these sets describes the outcome probabilities of any
compatible set of events (i.e., any context). Note that all
of them are corners in the language of [12]: if 0 ≤ qi ≤ pi
for all i ∈ V , then ~p ∈ EX(Γ) implies also ~q ∈ EX(Γ).

In particular, the extreme values of β over these sets
are denoted βC(Γ), βQM(Γ), and βGPT(Γ), respectively.
It is clear that

βC(Γ) ≤ βQM(Γ) ≤ βGPT(Γ) (1)

by definition.

Maximum values.—For given hypergraph Γ, we can
define the adjacency graph G on the vertex set V : two
i, j ∈ V are joined by an edge if and only if there exists
a C ∈ Γ such that both i, j ∈ C. Then,

βC(Γ) = α(G), βQM(Γ) = ϑ(G), (2)

where α(G) is the independence number of the graph, i.e.
the maximum number of pairwise disconnected vertices,
and ϑ(G) is the Lovász ϑ-function of G [12–14], defined
as follows: First, an orthonormal representation (OR) of
a graph is a set of unit vectors associated to the vertices
such that two vectors are orthogonal if the corresponding
vertices are adjacent. Then,

ϑ(G) := max

n∑
i=1

|〈ψ|vi〉|2, (3)

where the maximum is taken over all unit vectors |ψ〉
(in Eucledian space) and ORs {|vi〉 : i = 1, . . . , n} of
G [15]. Furthermore, ϑ(G) is given by a semidefinite
program (SDP) [13], which explains the key importance
of this number for combinatorial optimization and zero-
error information theory – indeed ϑ(G) is an upper bound
to the Shannon capacity of a graph [13].

Observe that this says in particular that when dis-
cussing classical and quantum models, we never need to
consider contexts of more than two events. Indeed, it is
a (nontrivial) property of these models that if in a set
of events any pair is compatible and exclusive, then so is
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the whole set; more generalized probabilistic theories do
not have this property, cf. [16].

To prove Eq. (2), we notice that, for a given proba-
bilistic model, the expectation is always maximized on
an extremal, i.e. pure, state. In the classical case, this
amounts to choosing a point ω ∈ Ω, so that wi := Pi(ω)
is a 0-1-valuation of the set V . By definition, it has the
property that, in each hyperedge C ∈ Γ, at most one ele-
ment is marked 1, and β is simply the number of marked
elements. It is clear that the marked elements form an
independent set in Γ (and equivalently in the graph G).
In the quantum case, let the maximizing state be given
by a unit vector |ψ〉, and for each i, 〈ψ|Pi|ψ〉 = |〈ψ|vi〉|2,
for |vi〉 := Pi|ψ〉/

√
ψ|Pi|ψ〉. This clearly is an orthog-

onal representation of G, in fact the projectors |vi〉〈vi|
form another quantum model of Γ, with the same maxi-
mum value of β, which by the definition we gave earlier
is just Lovász’ ϑ(G).

Each graph G where α(G) < ϑ(G) thus exhibits a lim-
itation of classical noncontextuality, which can be wit-
nessed in experiments with an appropriate set of projec-
tors, and on an appropriate state. In this sense, each
such graph provides a proof of the KS theorem.

Taking n ≥ 5 odd and applying a result from [13] to
G = Cn, the n-cycle, one obtains the same noncontextual
and quantum bounds recently obtained in [16].

It is known that ϑ(G) can be much larger than α(G);
in particular, it is known that (for appropriate, arbi-
trarily large n) there are graphs G with ϑ(G) ≈

√
n

but α(G) ≈ 2 log n, and others with ϑ(G) ≈ 4
√
n but

α(G) = 3 [17]. Hence, the quantum violation of noncon-
textual inequalities can be arbitrarily large.

Description of the probability sets.—We now show that
arbitrary linear functions can be optimized over EQM(Γ)

as semidefinite programs: for an arbitrary vector ~λ ∈ RV ,
let

~λ(EQM(Γ)) = max
∑
i

λipi s.t. ~p ∈ EQM(Γ). (4)

First of all, without loss of generality, all λi are non-
negative; this follows because EQM(Γ) is a corner and

hence ~λ(EQM(Γ)) is unchanged when we replace all neg-
ative λi by 0. Using the ideas of [13], this can be recast
as the following SDP

~λ(EQM(Γ)) = max tr ΛT

s.t. T ≥ 0, trT = 1, i∼j ⇒ Tij = 0.

(5)

The value ~λ(EQM(Γ)) is known as a weighted Lovász num-
ber (or ϑ-function) [12].

The previous discussion implies that not only function
optimization, but also membership in EQM(Γ) is an ef-
ficient convex problem: there is a polynomial-time algo-
rithm that, given a vector ~p, tests whether it is in EQM(Γ)

or not. This follows from general considerations of con-
vex optimisation [19–21].

Does there exist such a nice and efficient description
also for the classical set EC(Γ)? The fact that the maxi-
mum of β over it is the independence number α(G), which
is well-known to be NP complete, means that the answer
is “no.” In fact, EC(Γ) encodes the independence num-
bers α(G|S) of all induced subgraphs of G on subsets
S ⊂ V , and the best description that we have is as the
following 0-1-polytope:

EC(Γ) = conv
{
~σ : σi ∈ {0, 1}, i∼j ⇒ σiσj = 0

}
. (6)

The difficulty in evaluating βGPT(Γ) lies in capturing
the constraint that the Pi have to be sums of extremal,
normalized effects in the generalized probabilistic theory.
If we relax this condition simply to Pi having to be an
effect, we arrive at what we would like to call a fuzzy
model, which formalizes the notion that all {Pi : i ∈ C}
are compatible, but not necessarily exclusive events: so
we are left with Gleason’s constraints 0 ≤ 〈Pi〉 ≤ 1 and
for all C ∈ Γ,

∑
i∈C〈Pi〉 ≤ 1. Denote the (convex) set

of all expectations
(
〈Pi〉

)
i∈V when varying over models

and their states by EF(Γ). Then,

βGPT(Γ) = βF(Γ) = α∗(Γ), (7)

where α∗(Γ) is the fractional packing number of the hy-
pergraph Γ, defined by the following intuitive linear pro-
gram:

α∗(Γ) = max
∑
i∈V

wi

s.t. ∀i 0 ≤ wi ≤ 1 and ∀C ∈ Γ
∑
i∈C

wi ≤ 1.

(8)

The vectors ~w are fractional packings of Γ.
Conversely, given a fractional covering ~w, we can in-

deed show that there is an appropriate generalized prob-
abilistic model with effects Pi and a state, such that
wi = 〈Pi〉.

This proves actually that EGPT(Γ) = EF(Γ), the set
of fractional packings. This means that any linear func-
tion of expectation values can be optimized over EGPT(Γ)
as a linear program; likewise, checking whether ~p is in
EGPT(Γ) is a linear programming feasibility problem. �

For an example, for the n-cycles above, α∗(Cn) = n/2,
regardless of the parity of n, which is strictly larger than
ϑ(Cn) for all odd n ≥ 5. Again, we know of arbitrar-
ily large separations: there are hypergraphs Γ such that
the adjacency graph G is the complete graph Kn, hence
α(G) = ϑ(G) = 1, yet α∗(Γ)� 1 [18].

Bell inequalities.—Where does nonlocality come into
this? After all, Bell inequalities exploit locality in the
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form that one party’s measurement is compatible with
another party’s, and that the former’s outcomes are in-
dependent of the latter’s choices (i.e., insensitive to dif-
ferent contexts). We can model this also in our setting,
by going to the atomic events, which are labelled by a list
of settings and outcomes for each party. For instance, for
bipartite scenarios, let Alice and Bob’s settings be x ∈ X
and y ∈ Y, respectively, and their respective outcomes
be a ∈ A and b ∈ B. Then, we construct a graph with
vertex set V = A×B×X ×Y and edges abxy ∼ a′b′x′y′
if and only if (x = x′ and a 6= a′) or (y = y′ and b 6= b′),
encoding precisely that two events in V are connected in
the graph if and only if they are compatible and mutually
exclusive (as events in the Bell experiment as a whole).
Let Γ be the hypergraph of all cliques in G.

We can now discuss classical noncontextual, quantum
and generalized models for this graph, and hence also
noncontextual inequalities, restricting as above to linear
functions ~λ̇~p of the vector of the probabilities pab|xy =

〈Pabxy〉, with with non-negative coefficient vector ~λ. Note
that any Bell inequality can always be rewritten in such a
form, by removing negative coefficients using the identity
−pab|xy = −1 +

∑
a′b′ 6=ab pa′b′|xy for all x, y, a, and b.

These equations are not automatically realized in the sets
EX(Γ), X = C,QM,GPT – as indeed in the underlying
(classical, quantum or generalized) model it needs not
hold that

∑
ab Pabxy is the unit element, for any x, y.

Hence, define for any class of models X = C,QM,GPT,

E1X(Γ) := EX(Γ) ∩

{
~p : ∀xy

∑
ab

pab|xy = 1

}
, (9)

the set of probability assignments consistent with the
contextuality structure Γ, and in addition satisfying nor-
malization.

We can prove that E1C(Γ) is the set of correlations
explained by local hidden variable theories, and that
E1GPT(Γ) are exactly the no-signalling correlations. Fur-
thermore, to calculate the local hidden variable value Ωc

of a given Bell inequality with non-negative coefficient
vector ~λ, it holds that Ωc = ~λ(E1C(Γ)) = ~λ(EC(Γ)). In
this sense, any Bell inequality is at the same time a non-
contextual inequality for the underlying graph G.

With classical and no-signalling correlations taken care
of, we turn our attention to the quantum case. We can
also prove that the following subset of E1QM(Γ) is precisely
the set of correlations obtainable by local quantum mea-
surements on a bipartite state:

E11
QM(Γ) =

{(
〈Pabxy〉

)
abxy

: ∀xy
∑
ab

Pabxy = 11

}
. (10)

This means that, for a given Bell inequality with co-
efficients ~λ, the maximum quantum value is Ωq =

~λ(E11
QM(Γ)). For the time being, we do not know whether

the set of quantum correlations, i.e. E11
QM(Γ), is efficient

to characterize. It follows, however, from the above con-
siderations and the general theory of convex optimiza-
tion [19–21] that the – potentially larger – set E1QM(Γ)
can be decided efficiently. In fact, we shall see directly
that the maximum values ~λ(E1QM(Γ)) are computed to
arbitrary precision by semidefinite programming, thus
providing efficient upper bounds to Ωq. Implementing
this for example for the CHSH inequality [5], we recover
the Tsirelson bound 2

√
2 [22]. For the I3322 inequal-

ity [23] the method yields the upper bound 0.251 47 on
the quantum value; the currently best upper bound is

slightly smaller [24], from which we conclude that E11
QM(Γ)

is strictly contained in E1QM(Γ).
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