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Summary. Squashed entanglement is a measure for the entanglement of bipartite quantum states.
In [1] we present a lower bound for squashed entanglement in terms of the LOCC distance to the
set of separable states. This, in turn, has a number of consequences to quantum information
theory and quantum complexity theory. In particular, we find

• squashed entanglement to be a faithful entanglement measure, meaning that it is nonzero
on every entangled state;

• a new de Finetti-type theorem that gives conditions for the existence of data-hiding states;

• a subexponential-time algorithm solving the weak membership problem for the set of sep-
arable states in LOCC norm;

• multiple provers not to be more powerful than a single prover when the verifier is restricted
to LOCC operations. This answers a question posed by Aaronson et al. [2] and provides a
new characterization of the complexity class QMA.

We derive the lower bound on squashed entanglement from a lower bound on the quantum con-
ditional mutual information, which corresponds to the amount by which strong subadditivity
of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure
of states that almost satisfy strong subadditivity with equality. The proof of the lower bound is
based on two recent results from quantum information theory: the operational interpretation of
the quantum mutual information as the optimal rate for state redistribution [3] and the interpreta-
tion of the regularised relative entropy of entanglement as an error exponent in hypothesis testing
[4].

Main result. The quantum conditional mutual information of a tripartite quantum state ρABE
measures the correlations between A and B relative to E and is defined as

I(A;B|E)ρ = H(AE)ρ +H(BE)ρ −H(ABE)ρ −H(E)ρ.

Here, H(A)ρ is the von Neumann entropy of the reduced state ρA = TrBE ρABE . This mea-
sure is always non-negative by strong subadditivity and in [5] a characterisation of states with
I(A;B|E) = 0 was given. In particular, it was found that for such states, the reduced density
matrix ρAB must be separable, i.e. of the form

∑
i piρA,i ⊗ ρB,i. Our main result is an approximate

version of this fact, which we will now discuss.
By analogy with the trace distance, which relates to the optimal probability of distinguishing

two quantum states, the LOCC-norm distance ||ρ− σ||LOCC of two bipartite states measures how
well ρ and σ can be distinguished with local operations and classical communication (LOCC)
only. Formally [6], ||X||LOCC = maxA∈LOCC |tr(AX)|, where LOCC is the set of POVM elements
which can be implemented by LOCC. We similarly define || ∗ ||LOCC→ as the LOCC norm restricted
to one-way communication fromA toB. Our main result is that for every tripartite quantum state
ρABE ,

I(A;B|E)ρ ≥
1

2 ln 2

(
min

σA:B∈S
‖ρA:B − σA:B‖LOCC→

)2

, (1)
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where S is the set of separable states on A :B. We note that (1) is known to be false for the trace
norm since the ratio of the two sides might be as large as Ω(|A|), where |A| denotes the dimen-
sion of A [7]. This shows the need for considering restricted norms in order to get a dimension-
independent relation, something that is crucial for our applications. We will now use our main
result (1) in order to find a lower bound on squashed entanglement.

The entanglement measure squashed entanglement is defined as [8]

Esq(ρA:B) = inf
{
1
2I(A;B|E) : ρABE satisfies TrE ρABE = ρAB

}
.

A central open question, posed already in [8], is whether squashed entanglement is faithful, i.e.
strictly positive on every entangled state. An affirmative answer to this question follows from the
following lower bound, which is a consequence of (1) and the monotonicity of Esq under LOCC:

Esq(ρA:B) ≥ 1

4 ln 2

(
min

σA:B∈S
‖ρA:B − σA:B‖LOCC

)2

. (2)

As we will show in the following, the combination of (2) and the monogamy of squashed entan-
glement [9] has a number of interesting consequences outside entanglement theory.

Application 1: Quantum de Finetti theorem and data hiding. A state ρA:B is k-extendible if
there is a state ρA:B1,...,Bk that is permutation-symmetric in the B systems with ρA:B = ρA:B1 .
Quantum versions of the de Finetti theorem [10, 11] show that any k-extendible state is 4|B|2

k -close
to a separable state in trace norm. A corollary of (2) is an exponentially improved bound for the
LOCC norm: for every k-extendible ρA:B

min
σA:B∈S

‖ρA:B − σA:B‖LOCC ≤
(

4 ln 2 log |A|
k

) 1
2

. (3)

Among other things, this shows that highly extendible states that are far away in trace norm from
the set of separable states are data hiding states [12], which means that they can be used to globally
store information that is not accessible by LOCC operations alone.

Application 2: A subexponential-time algorithm for deciding separability. In the weak-
membership problem for separability one should decide if a given bipartite state ρA:B is in the
ε-interior of the set of separable states or ε-away from any separable state (in trace norm). The
best known algorithms for the problem have worst case complexity 2poly(|A|,|B|) log(1/ε), and the
problem is NP-hard for ε = 1/poly(n) [13, 14]. Assuming that there is no subexponential-time
algorithm for 3-SAT, even subexponential-time algorithms for separability of complexity up to
2O(log1−ν |A| log1−µ |B|) for constant ε and any ν + µ > 0 can be ruled out [15].

Our de Finetti bound (3) implies an exponential improvement for the LOCC-norm version
of this problem: There is a subexponential-time algorithm for deciding the weak membership
problem for separability in the LOCC norm, running in time 2O(ε−2 log |A| log |B|). In fact, the algo-
rithm is based on a well-known sequence of separability tests [16] and consists of searching for a
O(log |A|ε−2)-extension of ρA:B with semidefinite programming.

Application 3: Quantum Merlin-Arthur games with multiple Merlins. The class QMA is a quan-
tum analogue of NP and is formed by all languages that can be decided in polynomial-time by a
quantum verifier who is given a quantum system of polynomially many qubits as a proof. It is
natural to ask how robust this definition is and a few results are known in this direction [17–19].

Our de Finetti bound (3) gives a new characterisation of QMA, which at first sight might appear
to be strictly more powerful: We show that QMA is the class of languages decidable in polynomial-
time by a quantum verifier who is given k unentangled proofs and can measure them using any
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polynomial-time implementable LOCC protocol (among the k proofs). This answers a question
posed by Aaronson et al. [2].

Outline of the proof. We will give an outline of the proof of the main result (1). The described
applications follow relatively straightforward from this result. Details can be found in [1].

Inequality (1) follows by chaining together three inequalities, each of which is a new result in
entanglement theory and may be of independent interest:

I(A;B|E) ≥ E∞R (ρA:BE)− E∞R (ρA:E) ≥ DLOCC←(ρA:B) ≥ 1

2 ln 2

(
min
σ∈S
‖ρA:B − σ‖LOCC←

)2

.

Here, E∞R (ρA:B) is the regularised relative entropy of entanglement (see e.g. [4]), and
DLOCC←(ρAB) is the optimal error exponent for distinguishing ρA:B from separable states using
one-way LOCC measurements in asymmetric hypothesis testing [4].

The first inequality strengthens the non-lockability relation for ER [20], a key property of this
entanglement measure. It also connects, in an unexpected way, Esq and E∞R . No relation between
these two quantities was known before. The inequality is obtained by using the optimal protocol
for state redistribution from [3] in order to trace subsystem B in a more efficient way.

The second inequality is a monogamy-like relation for E∞R , the only one known to date. It
is proven by exploring the result from [4] that E∞R = DALL, with DALL defined in analogy with
DLOCC← , but with no restrictions on the measurements available. Using the optimal measure-
ments for ρA:E and ρA:B achieving DALL(ρA:E) and DLOCC←(ρA:B) we construct a measurement
for ρA:BE distinguishing it from separable states at a rateDALL(ρA:E)+DLOCC←(ρA:B), which is al-
ways smaller than DALL(ρA:BE) by the definition of the optimal rate. The inequality then follows
from the relation E∞R = DALL [4].

Finally, the third inequality is an analogue of Pinsker’s inequality for DLOCC←(ρA:B). Its proof
is based on von Neumann’s minimax theorem and a martingale property that separable states
satisfy when they are subject to local measurements.
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