Catalysis and activation of magic states (for fault tolerance)

Earl Campbell Universität Potsdam, Germany

earltcampbell@gmail.com

Based on work from: [Cam '11] arXiv:1010.0104 Builds on previous work with Dan Browne [Cam '10] Phys. Rev. Lett. 104 030503 (2010) [Cam '09]L.N.C.S (TQC '09) 5906 20 (2009)

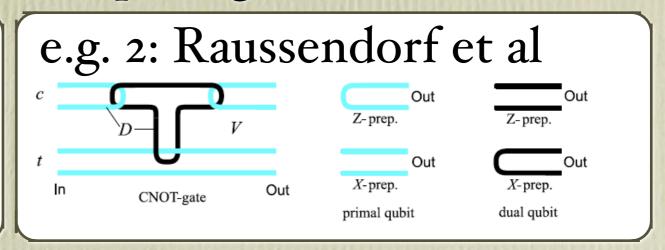
Overview

- Fault tolerance and Magic States
- Magic State Catalysis *NEW*
- Bound Magic States
- Activation (single shot and asymptotically) *NEW*

Motivations for magic states

 Magic states + Fault tolerant Clifford group = Universal Quantum computing;

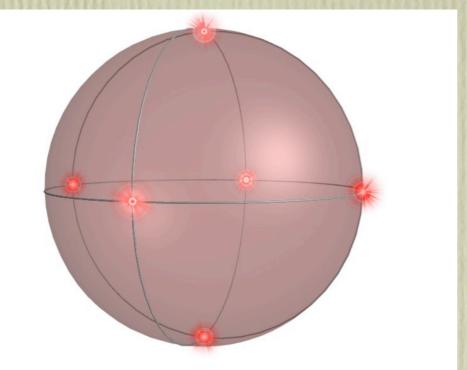
e.g.1 Topological FTQC: Pfaffian states of quantum hall systems with Landau filling fraction =5

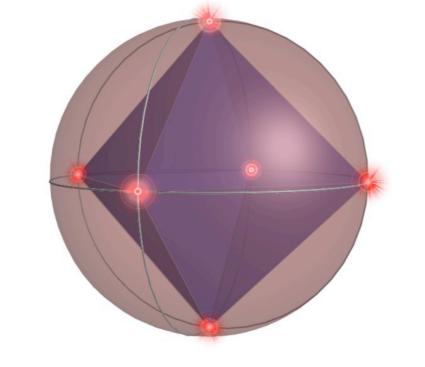


e.g. 3. most stabilizer codes, if we don't make use of Shor style methods of making Toffoli states.

• The "resource theory" of magic states shares <u>similarities with entanglement theory</u>, and this talk will explore these symmetries.

I qubit stabilizer states





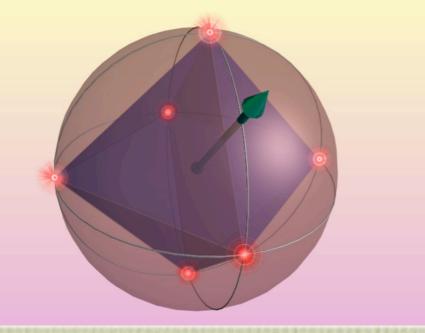
6 pure single-qubit stabilizer states.

 $Z|0\rangle = |0\rangle \qquad (-Z)|1\rangle = |1\rangle$ $X|+\rangle = |+\rangle \qquad (-X)|-\rangle = |-\rangle$ $Y|\circlearrowright\rangle = |\circlearrowright\rangle \qquad (-Y)|\diamondsuit\rangle = |\diamondsuit\rangle$

Mixing over these gives the *stabilizer octabedron*.

$$\rho = \frac{1}{2} \left(1 + c_x X + c_y Y + c_z Z \right)$$
$$|c_x| + |c_y| + |c_z| \le 1$$

Some Clifford gates



Hadamard A 180 degree rotation about octahedron edge $HZH^{\dagger} = X$ $HXH^{\dagger} = Z$ $HYH^{\dagger} = -Y$ T-Rot A 120 degree rotation about octahedron face $TZT^{\dagger} = X$ $TXT^{\dagger} = Y$ $TYT^{\dagger} = Z$

Gottesman-Knill theorem

classical computer

Circuit consisting of: efficiently • Preparing Stabilizer States; simulates • Pauli measurements; • Clifford group unitaries

It is easy to see that n-qubit in a stabilizer state can be described by n(2n+1) bits! Also efficient in time. [Got '98]

Promoting the Clifford group Or a similar eigenstate on the equator.... $|H|H\rangle = |H\rangle$ $|H\rangle\langle H| = \frac{1}{2}\left(1 + \frac{X+Z}{\sqrt{2}}\right)$ $e^{\pm i\frac{\pi}{8}Z}|\psi\rangle$ $|\psi\rangle$ H

Recap and comparison

	Magic	Entanglement
"Free" resource states	stabilizer states	Separable states
"Free" operations	Clifford unitaries, Pauli measurements	Local unitaries, and measurements
Ideal resource	Some pure non- stabilizer states. e.g. H state.	Pure entangled state. e.g. Bell pair

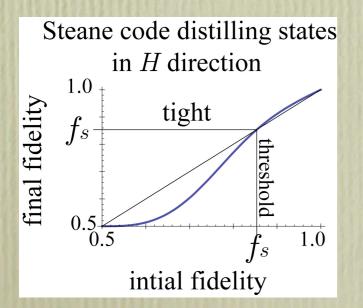
Reichardt's protocol [Rei'05, '06]

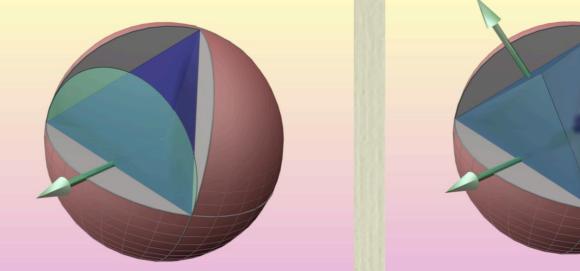
Noisy Hadamard States $\rho(f) = \frac{1}{2} \left(1 + (2f - 1) \frac{X + Z}{\sqrt{2}} \right)$

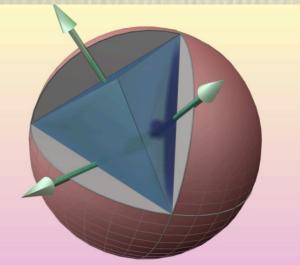
(1) Take 7 noisy H states copies and measure the 6 generators of the Steane code.

 $X_1X_2X_3X_41_51_61_7$ $X_1X_21_31_4X_5X_61_7$ $X_11_2X_31_4X_51_6X_7$ $Z_1 Z_2 Z_3 Z_4 1_5 1_6 1_7$ $Z_1 Z_2 1_3 1_4 Z_5 Z_6 1_7$ $Z_1 1_2 Z_3 1_4 Z_5 1_6 Z_7$

(2) Post-select on all syndromes "+1"& decode







Recap and comparison

Magic

Entanglement.

Distillation	All 1-qubit pure states, and some mixed states. [Bra '05, Rei '05, Rei '06]	All pure states and some mixed states.
Bound (undistillable) states	(will discuss later)	Yes [Horo '98]
Catalysis	?	Yes [Jon '99]
Activation	?	Yes [Horo '99]

Entanglement catalysis [Jon '99]

Banker loans client a resource (the catalyst) and demands that exactly the same state is (always) returned. The client is able to exploit the catalyst.

 $|\psi_1\rangle \not\rightarrow_D |\psi_2\rangle$

But with catalyst

 $|\psi_1\rangle|\varphi\rangle \to_D |\psi_2\rangle|\varphi\rangle$

 $\begin{aligned} |\psi_1\rangle &= \sqrt{0.4}|00\rangle + \sqrt{0.4}|11\rangle + \sqrt{0.1}|22\rangle + \sqrt{0.1}\sqrt{33} \\ |\psi_2\rangle &= \sqrt{0.5}|00\rangle + \sqrt{0.25}|11\rangle + \sqrt{0.25}|22\rangle \\ |\varphi\rangle &= \sqrt{0.6}|44\rangle + \sqrt{0.4}|55\rangle \end{aligned}$

Magic state catalysis [Cam '11]

Banker loans client a resource (the catalyst) and demands that exactly the same state is (always) returned. The client is able to exploit the catalyst.

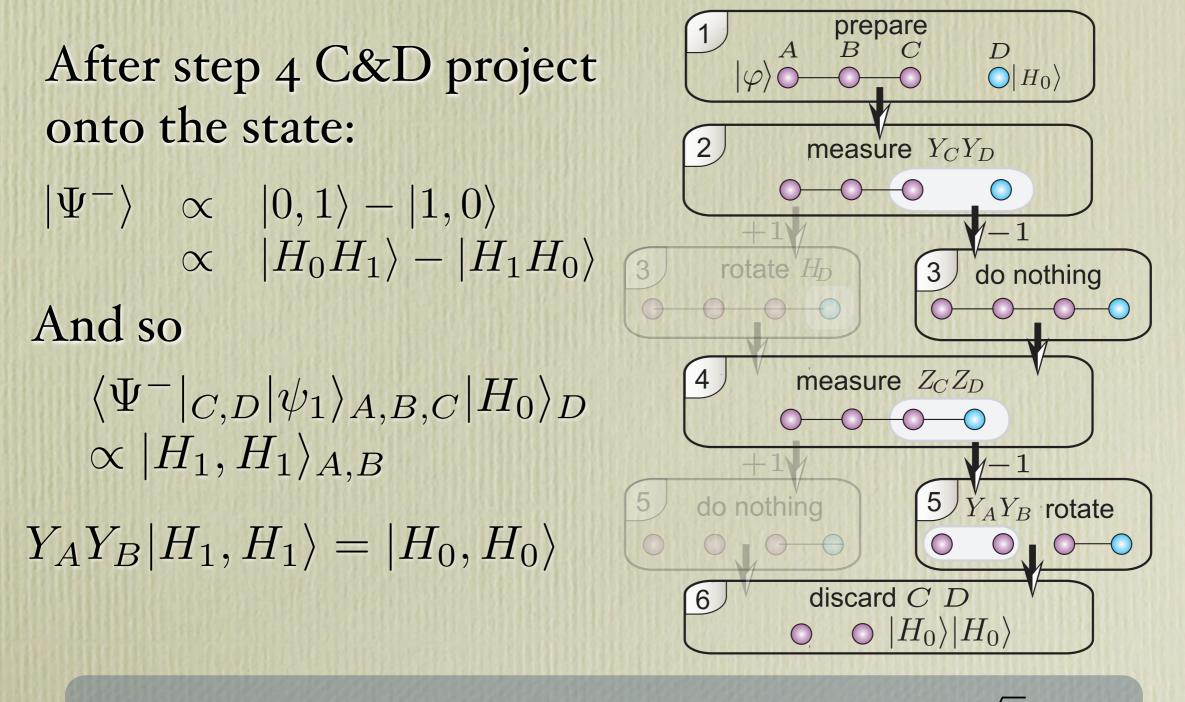
 $|\psi_1\rangle \not\rightarrow_D |\psi_2\rangle$

But with catalyst

 $|\psi_1\rangle|\varphi\rangle \to_D |\psi_2\rangle|\varphi\rangle$

 $\begin{aligned} |\psi_1\rangle &= (|H_0H_0H_0\rangle + |H_1H_1H_1\rangle)/\sqrt{2} \\ |\psi_2\rangle &= |H_0\rangle \\ |\varphi\rangle &= |H_0\rangle \\ |H_x\rangle\langle H_x| = \frac{1}{2}\left(1 + (-1)^x \frac{X+Z}{\sqrt{2}}\right) \end{aligned}$

Catalysis protocol

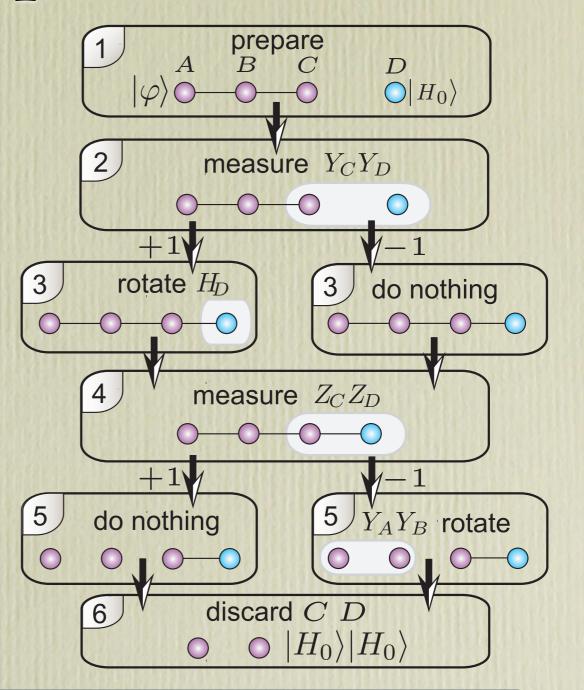


Def: $|\psi_1\rangle = (|H_0H_0H_0\rangle + |H_1H_1H_1\rangle)/\sqrt{2}$

Catalysis protocol

Steps 3 and 4 are deterministic by virtue of symmetries of |H> e.g.

 $H_D(1 + Y_C Y_D)|\psi_1\rangle|H_0\rangle$ = $(1 - Y_C Y_D)H_D|\psi_1\rangle|H_0\rangle$ = $(1 - Y_C Y_D)|\psi_1\rangle|H_0\rangle$



Def: $|\psi_1\rangle = (|H_0H_0H_0\rangle + |H_1H_1H_1\rangle)/\sqrt{2}$

Catalysis protocol

Our protocol shows

 $|H_0\rangle|\psi_1\rangle \rightarrow_D |H_0\rangle|H_0\rangle$ To demonstrate Catalysis we require also $|\psi_1\rangle \not\rightarrow_D |H_0\rangle$ We prove the stronger result that $|\psi_1\rangle \not\rightarrow_P |H_0\rangle$ we use P to denote probabilistic transforms Proof Outline: The ratios of the computational amplitudes for the Hadamard state are irrational. The transformations possible only give rational ratios.

Recap and comparison

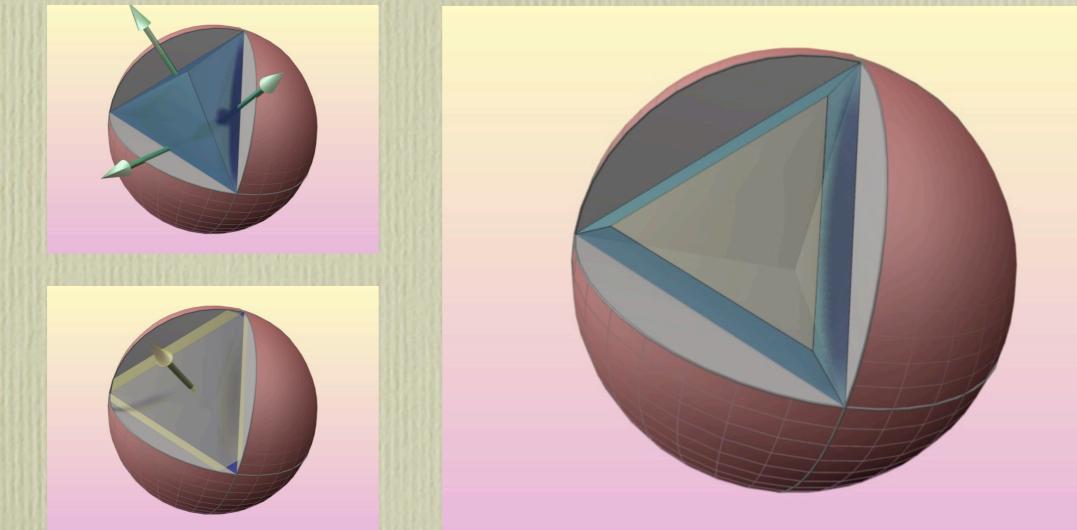
	Magic	Entanglement
Distillation	All 1-qubit pure states, and some mixed states. [Bra '05, Rei '05, Rei '06]	All pure states and some mixed states.
Bound (undistillable) states	(will discuss later)	Yes [Horo '98]
Catalysis	Yes. At least for Hadamard states! [Cam '11]	Yes [Jon '99]
Activation	?	Yes [Horo '99]

Bound entanglement [Horo '98]

Reducibility: $\exists \sigma \in \mathcal{E}_{2 \times 2}, \rho \to_P \sigma$ Irreducibility: $\nexists \sigma \in \mathcal{E}_{2 \times 2}, \rho \to_P \sigma$ $\mathcal{E}_{2 \times 2}$ Set of 2 qubit entangled states All reducible states are distillable

If the state is PPT, such that $tr(|\rho^{T_B}|) = 1$ then $\forall n, \rho^{\otimes n}$ is irreducible, and so we say ρ is bound entangled

The distillable region [Bra'05, Rei'05, Rei'06]



Reichardt has further increased this region. However, the reduced region is still *not tight*. *except at the octabedron edges*.

T Magic states

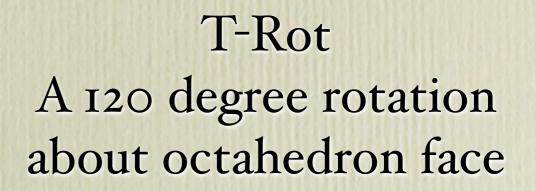
 $T|T_{0,1}\rangle \propto |T_{0,1}\rangle$

 $\tau(f) = f|T_0\rangle\langle T_0| + (1-f)|T_1\rangle\langle T_1| \\ = \frac{1}{2}\left(1 + (2f-1)\frac{X+Y+Z}{\sqrt{3}}\right)$

In the range:

$$\frac{1}{2}\left(1+\frac{1}{\sqrt{3}}\right) < f \le \frac{1}{2}\left(1+\sqrt{\frac{3}{7}}\right)$$

We have non-stabilizer states that cannot be distilled by any known protocol



 $\begin{array}{c} Z \to X \\ X \to Y \\ Y \to Z \end{array}$

Boundness of T-magic states

Previous results* tell us that:

Theorem 2 For any finite n, there exists a positive $\epsilon_n > 0$, and a corresponding no-go region of fidelities $f \leq f_{st} + \epsilon_n$. Inside this no-go region, it follows that for any single qubit state, ρ , we have that $\tau(f)^{\otimes n} \to_P \rho$ if and only if $\tau(f)^{\otimes n} \to_P \rho$. ρ . We say that the family of states $\tau(f)$ is bound.

> Roughly, there exist bound Magic states when. we have only a finite number of copies

*: Phys. Rev. Lett 104 030503 (2010)

Entanglement Activation [Horo '99]

Consider a bound state ρ which we suspect (pre 1999) is not useful for any task!

For some such states there exist activators σ_{ACT} such that

 $\sigma_{ACT} \otimes \rho^{\otimes n} \to_P \sigma \qquad \lim_{n \to \infty} \sigma \to |\Psi^+\rangle \langle \Psi^+|$ However $\sigma_{ACT} \not\to_P \sigma$ Bell pair

Single-shot activation

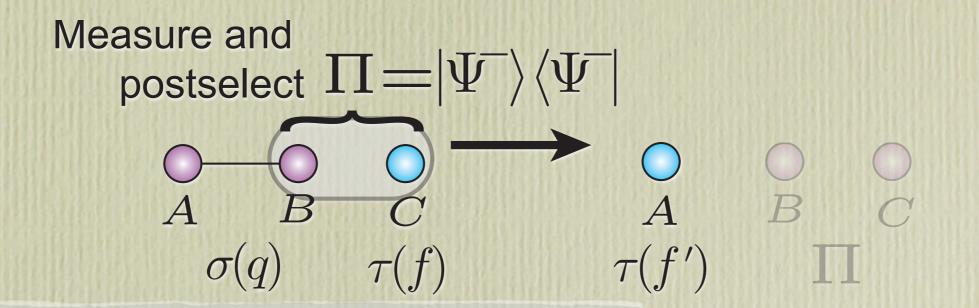
Theorem 3 Magic activation is possible: For the activator $\sigma(q) = q\tau_{0,1} + (1-q)\tau_{1,0}$ (for some 1 > q > 1/2) and any $\tau(f)$, with $f_{st} < f$, there exist a single-qubit state ρ such that:

i. $\sigma(q) \otimes \tau(f) \rightarrow_P \rho$; even though

ii. $\sigma(q) \not\rightarrow_P \rho$; and

iii. $\tau(f) \not\rightarrow_P \rho$.

single-shot activation



So...
$$\sigma(q) \otimes \tau(f) \to_P \tau(f')$$

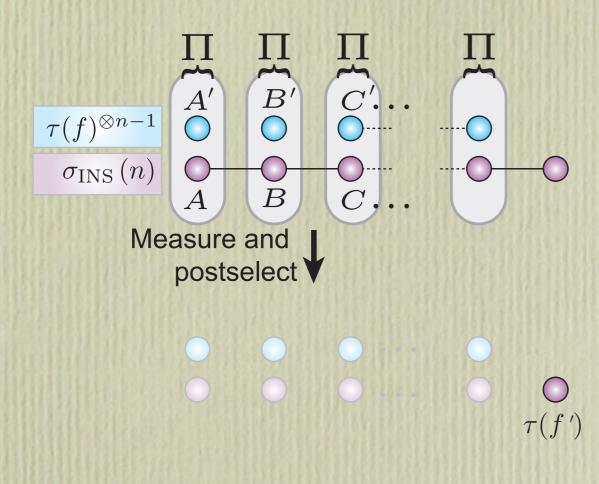
where $f' = \frac{qf}{qf + (1-q)(1-f)}$

One can also verify that $\sigma(q) \not\rightarrow \tau(f')$

 $|\Psi^{-}\rangle = (|0,1\rangle - |1,0\rangle)/\sqrt{2}$ $\propto |T_0, T_1\rangle - |T_1, T_0\rangle$

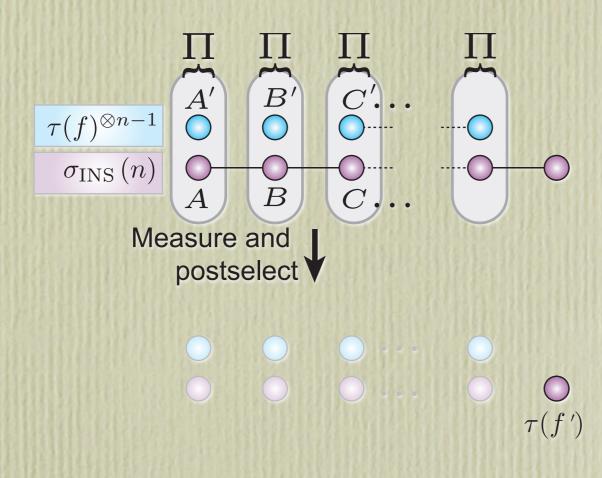
 $\sigma(q) = q\tau_{0,1} + (1-q)\tau_{1,0}$ $\tau(f) = f\tau_0 + (1-f)\tau_1$

Asymptotic activation



Using the same techniques as before we can verify that $\sigma_{\text{INS}}(n) \otimes \tau(f)^{n-1} \rightarrow \tau(f')$ with $\lim_{n \to \infty} f' = 1$

Asymptotic activation



Using the same techniques as before we can verify that

 $\sigma_{\rm INS}(n) \otimes \tau(f)^{n-1} \to \tau(f')$

with $\lim_{n \to \infty} f' = 1$

 $\sigma_{\text{INS}}(n) = q_n \tau_0^{\otimes n} + (1-q) \frac{1}{2^n}$ Irreducible Non-stabilizer State [Rei '06] $\sigma_{\text{INS}}(n) \not\rightarrow \rho \rho_{\text{nonstab}}$ Open question: are one-copy irreducible states, also many copy irreducible?

Recap and comparison

Magic

Entanglement.

Distillation	All 1-qubit pure states, and some mixed states.	All pure states and some mixed states.
Bound (undistillable) states	Yes. At least in finite regime! [Cam '09 '10]	Yes [Horo '98]
Catalysis	Yes. At least for Hadamard states! [Cam '11]	Yes [Jon '99]
Activation	Yes for single shot. Yes asymptotically using a growing resource! [Cam '11]	Yes [Horo '99]

Thanks to Dan Browne, Anwar, Matty Hoban for useful discussions.

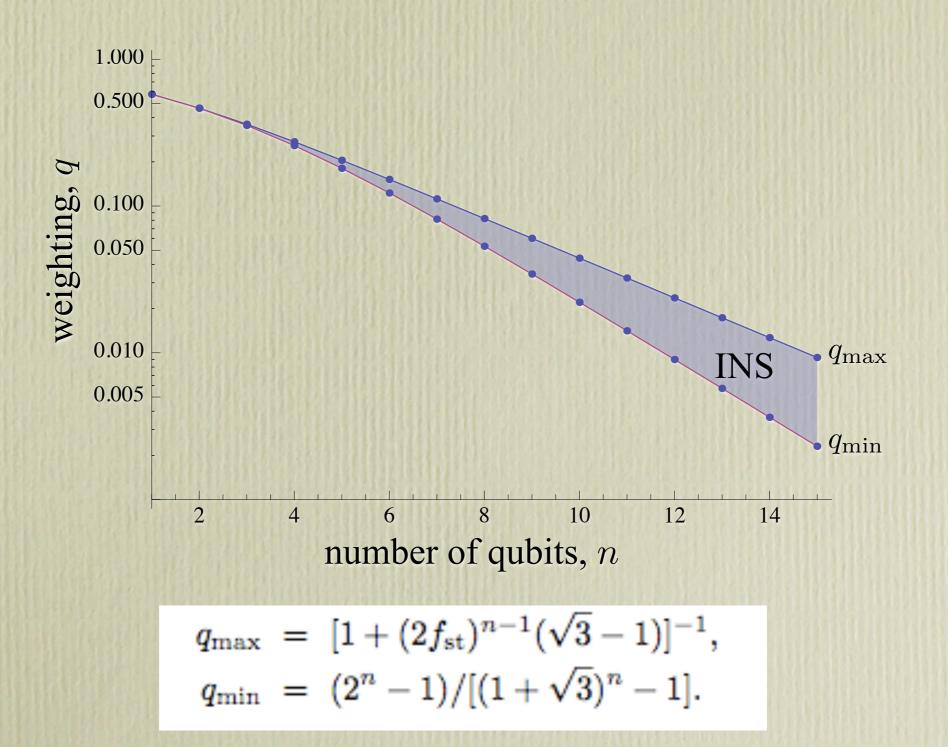
References:

[Cam '11] arXiv:1010.0104 [Cam '10] Phys. Rev. Lett. 104 030503 (2010) [Cam '09] L.N.C.S (TQC '09) **5906** 20 (2009) [Bra '05]: Brayvi, Kiteav Phys. Rev. A., 71, 022316 (2005) [Got '98]:Gottesman, Phys. Rev. A 57, 127 (1998). [Rei '05]: Reichardt. Quant. Inf. Proc., 4 251 (2005) quant-ph/0411036 [Rei '06]: Reichardt. quant-ph/0608085 [Jon '99]: Jonathan, Plenio, Phys. Rev. Lett. 83, 3566 (1999). [Horo '98]: The Horodeckis, Phys. Rev. Lett 80 5239 (1998) [Horo '99]: The Horodeckis, Phys. Rev. Lett. 82, 1056 (1999). [How '09] Howard, Vam Dam, Phys. Rev. Lett., 103, 170504 (2009) [How '10] Howard, Vam Dam, arXiv:1011.2497 [Rat '10] Ratanje, Virmani, arXiv:1007.3455

Catalysis No-Go details

 $|\varphi\rangle = (|H_0H_0H_0\rangle + |H_1H_1H_1\rangle)/\sqrt{2}$ is Clifford equivalent to $|\varphi'\rangle = (|H_0'H_0'H_0'\rangle + |H_1'H_1'H_1'\rangle)/\sqrt{2}$ $= (|0,0,0\rangle + i|1,1,0\rangle + i|1,0,1\rangle + i|0,1,1\rangle)/2$ All pure transforms to one-qubit have the form $|\varphi'\rangle \rightarrow \langle 0_L |\varphi'\rangle |0\rangle + \langle 1_L |\varphi'\rangle |1\rangle$ Define: $R = \frac{|\langle 0_L | \varphi' \rangle|^2}{|\langle 1_L | \varphi' \rangle|^2}$ Target is: $\frac{|\langle 0_L | H_0 \rangle|^2}{|\langle 1_L | H_0 \rangle|^2} = 3 - 2\sqrt{2}$ However R is rational $R = \frac{a^2 + b^2}{c^2 + d^2} \quad \begin{array}{c} a, b, c, d \in \mathbb{Z} \\ |a|, |b|, |c|, |d| \leq 4 \end{array}$

Irreducible NS



Irreducible NS

 To find q_{min} we must verify that the state is indeed a non-stabilizer state. We do this by calculating ||rho||_{st}

Lemma 1 A density matrix ρ , with decomposition in the Pauli basis $\rho = \sum_j a_j \sigma_j$, is a nonstabilizer state if

$$||\rho||_{\rm st} = \sum_{j} |a_j| > 1.$$
 (19)

Irreducible NS

$$\rho_{\text{out}} = \frac{q.\Pi \tau_0^{\otimes n} \Pi + (1-q)\Pi/2^n}{q.\text{tr}(\Pi \tau_0^{\otimes n}) + (1-q)/2^{n-1}}.$$
 (22)

The largest eigenvalue of the projected state is

$$\lambda = \frac{q.\operatorname{tr}(\Pi \tau_0^{\otimes n}) + (1-q)/2^n}{q.\operatorname{tr}(\Pi \tau_0^{\otimes n}) + (1-q)/2^{n-1}}.$$
(23)

To make further progress we must evaluate the maximum possible value of $tr(\Pi \tau_0^{\otimes n})$.

Lemma 2 For n copies of a single-qubit state, τ_0 , and for all projectors, Π , onto a 2^m -dimensional stabilizer subspace, the maximum probability of projection is

$$\max_{\Pi} \left[\operatorname{tr}(\Pi \tau_0^{\otimes n}) \right] = f_{\mathrm{st}}^{n-m}$$
(24)