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Communication Complexity
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e Alice is given input x and Bob is given y

e Their goal is to compute some (possibly partial)
function f(x,y) using the minimum amount of
communication

e Two central models:

1. Classical (randomized bounded-error) communication
2. Quantum communication




Relation Between Models

e [Raz'99] presented a function that can
be solved using O(logn) qubits of
communication, but requires poly(n) bits
of randomized communication

¢ Hence, Raz showed that:

quantum communication

e This is one of the most fundamental
results in the area




Is One-way Communication Enough?

¢ Raz’s quantum protocol, however,
requires two rounds of communication

e This naturally leads to the following
fundamental question:

Can quantum one-way
communication

be exponentially stronger than
classical communication?




Previous Work

e [BarYossef-Jayram-Kerenidis’04] showed a
relational problem for which quantum one-
way communication is exponentially stronger
than classical one-way

e This was improved to a function by
[Gavinsky-Kempe-Kerenidis-Raz-de\Wolf'07]

e [Gavinsky’08] showed a relational problem
for which quantum one-way communication
is exponentially stronger than classical
communication




Our Result

e We present a function with a O(logn)
quantum one-way protocol that requires
poly(n) communication classically

e Hence our result shows that:

quantum one~way communication
can be exponentially stronger than
classical communication

e This might be the strongest possible
separation between quantum and classical
communication




Vector in Subspace Problem

[Kremer95,Raz99] WcR"

Rn
Ve n/2-dim

( : subspace
o)

P]‘“A

-

>
e Alice is given a unit vector ve R" and Bob is given
an n/2-dimensional subspace W c R"

e They are promised that either
visinW or visin Wt

e Their goal is to decide which is the case using the
minimum amount of communication




Vector in Subspace Problem

e There is an easy logn qubit one-way
protocol
— Alice sends a logn qubit state

corresponding to her input and Bob
performs the projective measurement

specified by his input
e No classical lower bound was known

o We settle the open question by proving:

R(VIS)=Q(n"3)

e This is nearly tight as there is an O(n'?)
protocol




The Proof




The Rectangle Bound

e \We prove our lower bound using a standard
method known as the rectangle bound:




The Rectangle Bound

e \We prove our lower bound using a standard
method known as the rectangle bound:

e This reduces the problem to a clean mathematical
question, described next...




Being on the Equator is Great!




Unfortunately, only 21.3%

of the equator is land

Even though 29.2% of earth is
land

How can we correct this
injustice?




Choose a random equator!




The Main Sampling Statement

e A routine application of the rectangle bound
(omitted), shows that the following implies
the Q(n"3) lower bound:

e Thm 1: Let AcS"' be an arbitrary set of

measure at least exp(-n'3). Let H be a
uniform n/2 dimensional subspace. Then, the
measure of AnH is 1+0.1 that

of A except with probability
at most exp(-n'3).

e Remark: this is tight




Sampling Statement for Equators ==

e Thm 1is proven by a recursive
application of the following:

e Thm 2: Let AcS"™' be an arbitrary

set of measure at least exp(-n"3). Let H
be a uniform n-1 dimensional subspace.
Then, the measure of AnH is 1+t that

of A except with probability at most
exp(-t nZ3).
e S0 the error is typically
1+n %3 and has
exponential tail




Thm 1 from Thm 2

e Here is an equivalent way to choose a uniform n/2
dimensional subspace:

— First choose a uniform n-1 dimensional subspace, then choose
inside it a uniform n-2 dimensional subspace, etc.

e Thm 2 shows that at each step we get an extra
multiplicative error of 1tn"%3, Hence, after n/2

steps, the error becomes 1+n"2.n"23= 1+n16

e Assuming a normal behavior, this means
probability of deviating by more than 1+0.1 is at
most exp(-n'3)

e (Actually proving all of this requires a very delicate
martingale argument...)




Proof of Theorem 2

e The proof of Theorem 2 is based on:
— the Radon transform,
— spherical harmonics,
— the hypercontractive inequality on the sphere

e Concentration of measure doesn’t seem to
help

e See paper for an analogous statement for
the hypercube {0,1}"




Proof of Thm 2

e Thm 2: Let AcS"" be an arbitrary set of
measure at least exp(-n'3). Let x be a
uniform point in S™'. Then, the measure of
AN xt is 1£n™3 that of A except with
probability at most exp(-n'3).

e Equivalently, our goal is to prove that for all
A,B — S™' of measure at least exp(-n'3),

E - [1yeal € (1 £n77?)u(A)
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e For a function f:S" >R, define its Raoh
transform R(f):S" >R as

R()(X) i=Ey xt [f (¥)]
e Define f=1,/1(A) and g=15/1(B)
e Then our goal is to prove

(9, R(F)) =Ex[9g(X)R(f)(x)]e 1+




Spherical Harmonics

e We can decompose L2(5"") into orthogonal
subspaces S,, known as the spherical
harmonics

o Level R=0:

— constant functions, dimension=1

o Level k=t:

— linear functions (e.g., x,), dimension=n

o Level R=2:
— quadratic functions, dimension=(n?+n-2)/2,
e.g., x;>-1/n

e So any function f can be written as f=f +f +f,+... and
(£.9)= (fo.90)+ (F,9,)+(F2,9,)+...




Spherical Harmonics and Radon

e The subspaces S, are eigenspaces of the
Radon transform

¢ The associated eigenvalues A, are:

— Ao=1, 1;=0, X,=-1/n, A;=0, A,=1/n?, A,=O,.
e Hence, our goal is to prove tlﬂ/m
1 1

(R(f), 9} = {fo, o) — ;(fz, 92) + —{fa, ga) +---
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e It remains to show that for all sets A of
measure at least exp(-n"3) and f=1,/u(A),

If2ll2 < n*/?




Bounding the Weight in a Level
e A bit more generally, we will show that for all sets
A, f=1,/u(A), and k>1,

Ifll2 < (log(1/u(A)))¥/3

— The analogous bound for {0,13" was used in [Gavinsky-
Kempe-Kerenidis-Raz-deWolf'07]

e This is essentially equivalent to:

— If p is a level k polynomial with [lpll, -1
P[p(x) > t] < exp(—t*/¥)

— Proof of sufﬁaency

ficlls = (fw, f) = (f, fi) = Exea [f]

and so,

Ifll2 = Exea fi/ |1 fkll2]

e For k=1 this is easy (enough to consider x,)
— What about general k?




The Hypercontractive Inequality

e We prove it is using the hypercontractive
inequality for the sphere [Bakry-Emery’s5,
Rothaus’86, Gross'75,...]

— Our proof follows [Kahn-Kalai-Linial’88] who worked
in {0,1}"

o It says that for all q there is a time t s.t. if U, is the
heat flow operator for time t , then for any
function f:5S"" >R,

1Ut(Nlg = 1If 112

Ifllq :=ELIf191+9




The Hypercontractive Inequality

e The subspaces S, are eigenspaces of U,, and
hence U,p=p, b where L, , is the eigenvalue

¢ Plugging in the parameters, we get that for
any level k polynomial p with [Ipll,=1,
k/2

Ipllg < g*“llpllz =q

which implies the desired tail bound by a
simple Markov inequality




Open Questions

e Improve the lower bound to a tight n'?2

e Should be possible using the “smooth
rectangle bound” [Klaucki10]

e Improve to a functional separation
between quantum SMP and classical

e Seems very challenging, and maybe
even impossible?

e What about total functions?




