Quantum One-Way Communication can be Exponentially Stronger than Classical Communication

> Bo'az Klartag Tel Aviv University Oded Regev Tel Aviv University & CNRS, ENS, Paris

<image>

- Alice is given input x and Bob is given y
- Their goal is to compute some (possibly partial) function f(x,y) using the minimum amount of communication
- Two central models:
 - 1. Classical (randomized bounded-error) communication
 - 2. Quantum communication

Relation Between Models

 [Raz'99] presented a function that can be solved using O(logn) qubits of communication, but requires poly(n) bits of randomized communication • Hence, Raz showed that: quantum communication can be exponentially stronger than classical communication This is one of the most fundamental results in the area

Is One-way Communication Enough?

- Raz's quantum protocol, however, requires two rounds of communication
- This naturally leads to the following fundamental question:

Can quantum one-way communication be exponentially stronger than classical communication?

Previous Work

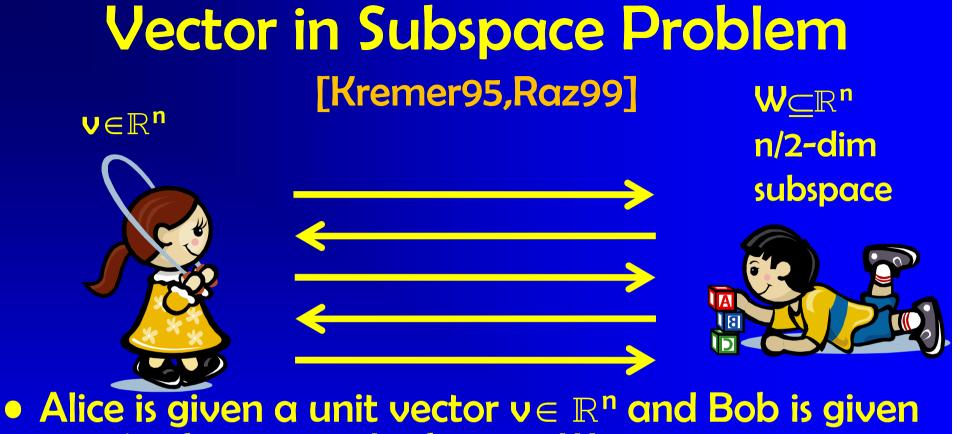
- [BarYossef-Jayram-Kerenidis'04] showed a relational problem for which quantum oneway communication is exponentially stronger than classical <u>one-way</u>
- This was improved to a <u>function</u> by [Gavinsky-Kempe-Kerenidis-Raz-deWolf'07]
- [Gavinsky'08] showed a <u>relational</u> problem for which quantum one-way communication is exponentially stronger than classical communication

Our Result

 We present a function with a O(logn) quantum <u>one-way</u> protocol that requires poly(n) communication classically
 Hence our result shows that:

> quantum one-way communication can be exponentially stronger than classical communication

 This might be the strongest possible separation between quantum and classical communication



an n/2-dimensional subspace $W \subseteq \mathbb{R}^n$

They are promised that either

v is in W or v is in W^{\perp}

 Their goal is to decide which is the case using the minimum amount of communication

Vector in Subspace Problem

 There is an easy logn qubit one-way protocol

 Alice sends a logn qubit state corresponding to her input and Bob performs the projective measurement specified by his input

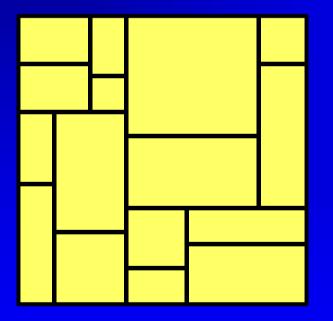
- No classical lower bound was known
- We settle the open question by proving: $R(VIS)=\Omega(n^{1/3})$

 This is nearly tight as there is an O(n^{1/2}) protocol

The Proof

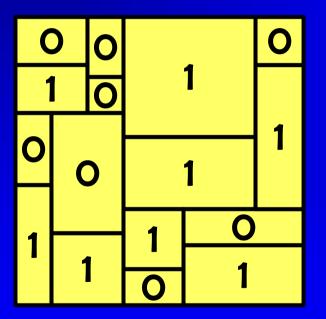
The Rectangle Bound

• We prove our lower bound using a standard method known as the rectangle bound:



The Rectangle Bound

• We prove our lower bound using a standard method known as the rectangle bound:



 This reduces the problem to a clean mathematical question, described next...

Being on the Equator is Great!

Unfortunately, only 21.3% of the equator is land

Choose a random equator!

The Main Sampling Statement

- A routine application of the rectangle bound (omitted), shows that the following implies the Ω(n^{1/3}) lower bound:
- Thm 1: Let A⊆Sⁿ⁻¹ be an arbitrary set of measure at least exp(-n^{1/3}). Let H be a uniform n/2 dimensional subspace. Then, the measure of A∩H is 1±0.1 that of A except with probability at most exp(-n^{1/3}).

• Remark: this is tight

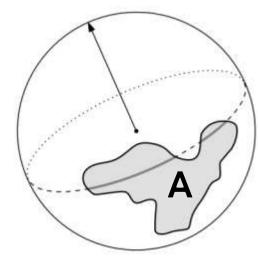
Sampling Statement for Equators

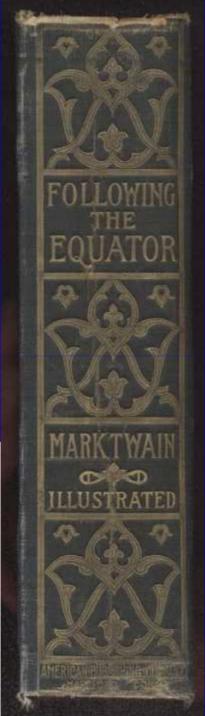
- Thm 1 is proven by a recursive application of the following:
- <u>Thm 2</u>: Let A⊂Sⁿ⁻¹ be an arbitrary

set of measure at least $exp(-n^{1/3})$. Let H be a uniform n-1 dimensional subspace. Then, the measure of A \cap H is 1±t that of A except with probability at most

 $exp(-t n^{2/3})$.

 So the error is typically 1±n^{-2/3} and has exponential tail





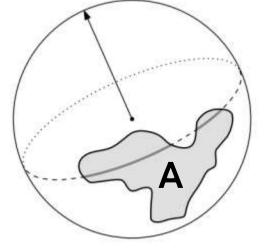
Thm 1 from Thm 2

- Here is an equivalent way to choose a uniform n/2 dimensional subspace:
 - First choose a uniform n-1 dimensional subspace, then choose inside it a uniform n-2 dimensional subspace, etc.
- Thm 2 shows that at each step we get an extra multiplicative error of $1\pm n^{-2/3}$. Hence, after n/2 steps, the error becomes $1\pm n^{1/2} \cdot n^{-2/3} = 1\pm n^{-1/6}$
- Assuming a normal behavior, this means probability of deviating by more than 1±0.1 is at most exp(-n^{1/3})
- (Actually proving all of this requires a very delicate martingale argument...)

Proof of Theorem 2

• The proof of Theorem 2 is based on:

- the Radon transform,
- spherical harmonics,
- the hypercontractive inequality on the sphere
- Concentration of measure doesn't seem to help
- See paper for an analogous statement for the hypercube {0,1}ⁿ



Proof of Thm 2

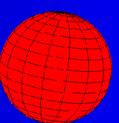
<u>Thm 2:</u> Let A⊂Sⁿ⁻¹ be an arbitrary set of measure at least exp(-n^{1/3}). Let x be a uniform point in Sⁿ⁻¹. Then, the measure of A∩ x[⊥] is 1±n^{-1/3} that of A except with probability at most exp(-n^{1/3}).

• Equivalently, our goal is to prove that for all $A,B \subseteq S^{n-1}$ of measure at least $\exp(-n^{1/3})$, $\mathbb{E} \quad [1_{y \in A}] \in (1 \pm n^{-1/3})\mu(A)$ $x \sim B, y \sim x^{\perp}$

For a function f:Sⁿ⁻¹→ℝ, define its Radon transform R(f):Sⁿ⁻¹→ℝ as
R(f)(x) := E_{y~x[⊥]} [f(y)]
Define f=1_A/µ(A) and g=1_B/µ(B)
Then our goal is to prove
(g, R(f)) = E_x[g(x)R(f)(x)] ∈ 1 ± n^{-1/3}

Spherical Harmonics

- We can decompose L²(Sⁿ⁻¹) into orthogonal subspaces S_k known as the spherical harmonics
- Level k=0:
 - constant functions, dimension=1
- Level k=1:
 - linear functions (e.g., x₁), dimension=n
- Level k=2:
 - quadratic functions, dimension=(n²+n-2)/2,
 e.g., x₁²-1/n
- So any function f can be written as $f=f_0+f_1+f_2+...$ and $\langle f,g \rangle = \langle f_0,g_0 \rangle + \langle f_1,g_1 \rangle + \langle f_2,g_2 \rangle + ...$



Spherical Harmonics and Radon The subspaces S_b are eigenspaces of the **Radon transform** • The associated eigenvalues $\lambda_{\rm b}$ are: $-\lambda_0=1$, $\lambda_1=0$, $\lambda_2=-1/n$, $\lambda_3=0$, $\lambda_4=1/n^2$, $\lambda_5=0$, • Hence, our goal is to prove the $\leq \frac{1}{n} ||f_2||_2 ||g_2||_2$ $\langle R(f), g \rangle = \langle f_0, g_0 \rangle - \frac{1}{n} \langle f_2, g_2 \rangle + \frac{1}{n^2} \langle f_4, g_4 \rangle + \frac{1}{n^2} \langle f_4,$ $\epsilon 1 \pm n^{-1/3}$ Similarly... It remains to show that for all sets A of measure at least exp($-n^{1/3}$) and f=1_A/µ(A), $|f_2|_2 < n^{1/3}$

Bounding the Weight in a Level A bit more generally, we will show that for all sets A, f=1,/ μ (A), and k \geq 1, $||f_k||_2 \leq (\log(1/\mu(A)))^{k/2}$ - The analogous bound for {0,1}ⁿ was used in [Gavinsky-Kempe-Kerenidis-Raz-deWolf'07] • This is essentially equivalent to: - If p is a level k polynomial with ||p||₂=1, $\mathbb{P}[p(x) > t] \leq \exp(-t^{2/k})$ - Proof of sûfficiency: $||f_k||_2^2 = \langle f_k, f_k \rangle = \langle f, f_k \rangle = \mathbb{E}_{\mathbf{x} \in A} [f_k]$ and so. $||f_k||_2 = \mathbb{E}_{x \in A} [f_k / ||f_k||_2]$ For k=1 this is easy (enough to consider x₁) - What about general k?

The Hypercontractive Inequality

- We prove it is using the hypercontractive inequality for the sphere [Bakry-Émery'85, Rothaus'86, Gross'75,...]
 - Our proof follows [Kahn-Kalai-Linial'88] who worked in {0,1}ⁿ
- It says that for all q there is a time t s.t. if U_t is the heat flow operator for time t , then for any function f: $S^{n-1} \rightarrow \mathbb{R}$,

 $||U_t(f)||_q \leq ||f||_2$

The Hypercontractive Inequality

The subspaces S_k are eigenspaces of U_t, and hence U_tp=µ_{t,k}p where µ_{t,k} is the eigenvalue
 Plugging in the parameters, we get that for any level k polynomial p with ||p||₂=1, ||p||_q ≤ q^{k/2} ||p||₂ = q^{k/2} which implies the desired tail bound by a simple Markov inequality

Open Questions

Improve the lower bound to a tight n^{1/2}
 Should be possible using the "smooth rectangle bound" [Klauck10]

Improve to a functional separation between quantum SMP and classical
Seems very challenging, and maybe even impossible?

• What about total functions?