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Quantum phases of naturally-occurring sys-
tems exhibit rich nature as manifestation of their
many-body correlations, in contrast to our persis-
tent technological challenge to build at will such
correlations artificially from scratch. Here we
show theoretically that quantum correlations ex-
hibited in the two-dimensional valence bond solid
phase of a quantum antiferromagnet, modeled by
Affleck, Kennedy, Lieb, and Tasaki as a precursor
of spin liquids and topological orders, are suffi-
ciently complex yet structured enough to simu-
late universal quantum computation when every
single spin can be measured individually. This
unveils that an intrinsic complexity of naturally-
occuring 2D quantum systems — which has been
a long-standing challenge for traditional comput-
ers — could be tamed as a computationally valu-
able resource, regardless of our constraint not
to create newly entanglement during computa-
tion. Our constructive protocol leverages a novel
way to herald the correlations suitable for deter-
ministic quantum computation through a random
sampling, and may be extensible to other ground
states of various 2D valence bond phases beyond
the AKLT state.

In an alternative way to the conventional bottom-up
idea to build up a quantum computer artificially from
scratch, we suggest taking a top-down vision in that we
attempt to tame a resource of suitably structured entan-
glement, which could either exist in nature or be simu-
lated relatively naturally within our technology, for the
sake of easier scalability. A key point of the vision is our
limited ability such that once a specific natural resource
of structured many-body entanglement is provided, we
are supposed to utilize only operations which just con-
sume entanglement without its new creation, such as lo-
cal measurements and local turning off of an interaction.

Our target of the naturally-occuring two-dimensional
(2D) system is the valence bond solid (VBS) phase of
spin 3

2 ’s on the 2D hexagonal lattice, modeled by Affleck,
Kennedy, Lieb, and Tasaki (AKLT) [2, 3], which is widely
recognized as a cornerstone in condensed matter physics.
Their VBS construction of the ground state in terms of
the distributed spin singlets (or the valence bonds) has
become one of most ubiquitous insights in quantum mag-
netism as well as in high-Tc superconductivity, and leads
to modern trends of spin liquids and topological orders.
It turns out here that the 2D VBS phase, represented by
the AKLT ground state, provides an ideal entanglement
structure of quantum many-body systems that can be

suitably tamed through our limited capability to the goal
of universal quantum computation. Our top-down vi-
sion is materialized conveniently in taking advantage of
a conventional framework of measurement-based quan-
tum computation (MQC) whose methods have been de-
veloped to “steer” quantum information through given
many-body correlations using only a set of local measure-
ments and classical communication, under which entan-
glement is just consumed without new creation. Later
we extend that in a wider program to tame naturally-
occuring many-body correlations.

In the context of MQC, the 2D cluster state [4] is the
first and canonical instance of such an entangled state
that pertains to a universal quantum computational ca-
pability when every single qubit (spin 1

2 ) is measured
individually and the outcomes of the measurements are
communicated classically [5, 6]. Remarkably, it was al-
ready noticed in Ref. [7] that MQC on the 2D cluster
state utilizes a structure of entanglement which is analo-
gous to that of the aforementioned VBS state. Following
such an observation, the tensor network states, as a class
of efficiently classically parameterizable states in extend-
ing the VBS construction, has been used in Refs. [8, 9] to
construct resource states of MQC, where it was indicated
that a certain set of the local matrices or tensors that
describe the correlations can result in a quantum unital
map through the single-site measurement. Notably, how-
ever, most known examples considered so far, including
additionally those e.g. in Refs. [10–15], are constructed to
have such a convenient yet artificial property — as often
referred as one of peculiar properties of the correlations
of the 2D cluster state — that it is possible to decouple
deterministically (by measurements of only neighboring
sites) a 1D-chain structure that encodes the direction of
a simulated time as a quantum logical wire of the quan-
tum circuit model. This peculiarity is said to be artifact
of another less realistic feature of the 2D cluster state
in that it cannot be the exact ground state of any two-
body spin- 1

2 Hamiltonian [16, 17], and thus one cannot
expect such convenience in the correlations of a genuine
2D ground state of a naturally-occuring spin system.

The main result of our paper is summarized in the fol-
lowing (informal) theorem and illustrated in the Figure 1.
As elaborated in the full paper [1], we introduce a novel
way to herald the correlations suitable for deterministic
quantum computation through a random sampling, to
tame for the first time the genuine 2D naturally-occurring
correlation, which otherwise has natural tendency to split
an incoming information into two outgoing information
because of certain symmetric nature of the three direc-
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standard basis: x      y      z
complementary basis: x      y      z

FIG. 1: A scheme of quantum computation through measur-
ing the correlations of the 2D AKLT state, a representative
state of the 2D VBS phase of spin 3

2
’s on the 2D hexagonal

lattice. After a random sampling which assigns every spin per
site to one of three axes x, y, and z, the typical configuration
of the outcomes enables us to choose the backbone structure
(described by a shaded region) along which quantum compu-
tation is deterministically simulated in terms of a quantum
circuit. Our protocol harnesses a pair (depicted as a dotted
bond of the hexagonal lattice) of neighboring sites where one
is measured in a standard basis and the other is done in a
complementary basis, to accommodate the desired structure
of space-time along the region of the backbone. An emergence
of the time is simulated if both two bits of information out of
measurements per site are communicated to the same direc-
tion (as depicted as the double arrows), on the other hand, an
emergence of the space is simulated if two bits of information
are communicated to the opposite directions (as depicted as
a pair of the single arrows pointing apart). The figure illus-
trates a microscopic view of the Figure 2, and the two-qubit
CNOT gate is implemented in the middle region between two
quantum logical wires running from the right to the left.

tions at every site of the 2D hexagonal lattice. This seems
to be the reason why MQC on the 2D AKLT state has
been an open question in a long time, although the AKLT
state by the 1D spin-1 chain was shown in Ref. [10] to be
capable of simulating a single quantum wire of MQC. A
related result about usefulness of the 2D AKLT state is
recently announced independently in Ref. [18].

Theorem. A universal quantum computation can be
simulated through consuming monotonically entangle-
ment provided as the 2D AKLT state |G〉 (defined as the
VBS state of a spin 3

2 per site and described as a tensor
network state) of the size proportional to the target quan-
tum circuit size, in terms of single-site measurements of
every individual spin 3

2 , a bounded amount of classical
communication of measurement outcomes per site, and
efficient classical side-computation.

Insight to the MQC protocol

We intend to simulate the quantum circuit model
through measuring the correlations at every site, and
call the part of the 2D hexagonal lattice sites that corre-
sponds to the quantum circuit (consisting of the quantum
logical wires running almost horizontally and their entan-
gling gates described vertically) a backbone, as seen in
Figure. 2. The degree of the backbone site refers to how
many neighbors it has along the backbone. The degree-3
backbone sites are used at every junction of the horizon-
tal logical wire with a vertical entangling gate, so that
they are required only occasionally.

A key insight to construct our protocol is that since
the reduced density operator of every spin 3

2 per site is
totally mixed and isotropic, i.e., the normalized identity
projector 11

4 , we are able to extract 2 bits of classical infor-
mation by measurements per site. Then it is sensible that
in stead of obtaining them at once, a part of the informa-
tion, indeed log2 3 bits in our case, is first extracted and
we adapt the next stage according to it. It might be sur-
prising that the first measurement induces a kind of ran-
domization, but intuitively speaking, this part is crucial
to separate the original quantum correlation that intrin-
sically involves genuine 2D fluctuations into the classical
correlation (or, a statistical sampling) that can be still
efficiently handled by a classical side-processor and the
“more rigid” quantum correlation suitable for determin-
istic quantum computation. A global statistical nature
of the AKLT correlations through the first stage guaran-
tees, in an analogous way with the classical percolation
phenomenon, that an embedding of the backbone (i.e.
the target quantum circuit) can be found in the typi-
cal configuration of a heralded, randomized distribution
of entanglement. At the second stage which implements
quantum computation, the measurements are invented
in such a way that the standard-basis measurement and
complementary-basis one, both of which are defined in
Ref. [1], are always paired (as depicted by the dotted
bonds in the Figure. 1).

Summary of the MQC protocol

Now we outline our MQC protocol, which consists of
two stages. (i) The first stage is to apply a measurement
{Mx,My,Mz} which depolarizes randomly toward one
of the three orthogonal axes at every site. We define a
degenerate projection Mµ (µ = x, y, z) as

Mµ =
√

2
3 (| 32

µ〉〈 3
2

µ| + | − 3
2

µ〉〈− 3
2

µ|).

The set of {Mx,My,Mz} constitutes the posi-
tive operator value measure (POVM) by satisfying∑

µ=x,y,z Mµ†Mµ = 11, so that it is a valid local mea-
surement with three alternative, random outcomes µ.
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FIG. 2: (Left) Illustrated is a typical distribution of matched bonds (depicted as thicker, dark-cyan bonds) where a pair of
neighboring sites are assigned to the same axis through the polarizing measurement at the first stage. (Right) The backbone
(described as a shaded, orange region) is identified efficiently by analyzing classically such a distribution, so that it can skirt all
pieces of “off-limits” matched bonds (depicted as thicker, light-cyan bonds) that involve either a site with triple matched bonds
or a closed loop. The other matched bonds may be freely available as a part of the backbone, with an additional prescription
to their “branching out” (described by a shaded, yellow region). The almost sure success of this classical side-computaton is
guaranteed in an analogous way with the bond percolation phenomenon, based on the statistical property on the occurrence
of matched bonds, originated from a genuine 2D nature of the correlations of the AKLT state. The microscopic view near the
CNOT gate is highlighted in the Figure 1.

We must record the outcome µk at every site k and col-
lect the location of the “matched” bonds such that the
pair of the axes for the neighboring sites k, k′ coincides,
namely µk = µk′ . Based on an occurrence of matched
bonds (that need additional care in their use), we are
able to determine the backbone by efficient classical side-
compuation in circumventing some rare “off-limits” con-
figurations of matched bonds (see Figure 2).

(ii) The second stage carries actual quantum computa-
tion, using further projective measurements at every site
and feedforward of their outcomes. Once the backbone
is identified, the computation is deterministic in a very
similar way with MQC on the 2D cluster state.

Final note

The details of the work are available online in Ref. [1].
Another submission to QIP by the author about Ref. [19]
is relevant to the current work in the sense that the idea
of the former could be combined to make not only the
representative state (i.e., the 2D AKLT state) of the 2D
VBS phase but also any ground state in the 2D VBS
phase ubiquitously useful for quantum computation un-
der the similar protocol.
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