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Outline of the talk

Introduction

* measurement-based quantum computation (MQC)

e 2D AKLT state

Part 1 (Miyake)

Simulating a quantum circuit model (arXiv:1009.3491)

Part 2 (Wei)

Transforming into a 2D cluster state (arXiv:1009.2840)



universal QC model by

Measurement-based quantum computation
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[MQC on a 2D cluster state:
Raussendorf & Briegel, PRL '01;
Raussendorf, Browne, Briegel, PRA '03 ]

practical implementation?
(large-scale entanglement)



2D AKLT state

[Affleck, Kennedy, Lieb, Tasaki,
PRL '87; CMP '88]
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3: projector to total spin 3 for every pair

 valence bond solid state (to materialize a spin liquid)

* merits as resource: a preparation by cooling
stability of a gapped ground state



alll FAQ: where are qubu'rs?

edge state (spin 1/2): —1/1In(3/ 9 A7
emergent fractional degree of {
freedom, localized at boundary /\,:;\
- area law of entanglement I
- stay in degenerate ground states A
(cf. topological feature) \./\ ,
\T, \1, L %/
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upshot of QC: scattering process among edge states



Challenge to construct MQC Protocol

- entanglement network to gate-teleport quantum information
[Gottesman, Chuang, Nature'99]

‘ [Raussendorf, Briegel, PRL'O1]
cluster-state has a VBS-like [Verstraete, Cirac, PRA'04]

entanglement structure (PEPS) [Childs, Leung, Nielsen PRA'05]
[Gross, Eisert, PRL'O7;

Gross, Eisert, Schuch, Perez-
Garcia, PRA'07] ...

* steering quantum information in a controllable (quantum-
circuit) manner

1+1D quantum circuit 3-WC(Y symmeTr‘ic l

] T

How to get unitary maps? How to distinguish space and time?




Outline of MQC Protocol

How to get unitary maps and composed them?

1. measurement at every site, \I/ ~"branching-out

depolarizing randomly into \/( mtt@h@'d f@@ﬂﬂ@{?

one of the three axes
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1'. classical side-computation: A hoNbr _matched bonds.

in a typical configuration of matched bonds identifying a
backbone (which excludes all sites with ’rr'lple matched bonds)

2. deterministic quantum computation



Ideas behind MQC Protocol

How to get unitary maps and composed them?

™ ~"branching-out
« a (mutually-unbiased) pair of | \Ii/( Q gtched mm”
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* "concentration” from 2D (3-way symmetric) correlation

= classical statistical correlation (via random sampling)
+ "more rigid” quantum correlation



Universal gates and space-time structure
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universal gates:

— Ru(g)_
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standard basis: x4 yu z't*/'t‘

complementary basis: x<% y <% 7¢9
two bits sent in the same direction
at backbone site: two bits sent in opposite directions

classical information

T — xa© gza (no net asymmetry in directions)



Summary of Part 1

ground state of a realistic 2D condensed matter system
(valence bond solid phase) can be harnessed as
a resource of measurement-based quantum computation.

hew perspective to traditionally-intractable complexity
of 2D quantum systems

> A. Miyake, quantum computational capability of
a two-dimensional valence bond solid phase,
arXiv:1009.3491



Second part:
Converting AKLT state to cluster state

Tzu-Chieh Wei, lan Affleck and Robert Raussendorf

Ref: arXiv: 1009.2840



Spin-3/2 AKLT state on honeycomb

o Each site contains three virtual qubits @ singlet [01) — [10)

o Two virtual qubits on an edge form a singlet H

o Projection (Pg,) onto symmetric subspace of 3 qubits at each site

o Unique ground state of

H — Z 15_1.(.}9.:3): Z [S-’Z _
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The POVM in terms of virtual qubits

[ Wei,Affleck & Raussendorf’10

o Three elements satisfy: Miyake *10]
FJ,:CFU,iL’ + FJ,yF’U,y + FJ,ZFU,Z - Pv,sym Z‘0/1> = :I:‘O/1>
P \/g(|000><000| 1)) ) = (0) + [1))/v2
) X|+) = £|£)
Fv,z = \/;ﬂ + ++><+‘|‘ +| + | - __><_ - _l) ‘ i2> — (’ > iz’”)/\/’
Fo, = @m>w+| — i, i, —i) (4, =i, i) Yitid) = +£|£10)

=> In terms of spin-3/2, F, , projects onto S,=+ 3/2 subspace

o POVM outcome (x,y, or z) is random: a, ={X,y,z} € A for all sites v

X
Spin-3/24)£ y = new quantization axis

Z

0 Post-POVM state becomes .
singlets
T(A) = ) Foa, |Pakir) = ) Foa, Q) [9)e —

veV (L) veV (L) ecE(L)



First result: the post-POVM state
IS an encoded graph state

® Fya, |PaxLT) = ® Fya ®

veV (L) veV (L) ecE(L)



Graph states: stabilizer formalism

o Stabilizer generators: K, =X, ® Zy
uwENbDb(v)
Q On arbitrary graph: graph states [Hein, Eisert & Briegel 04]
K,|G) = |G)

, [Raussendorf &Briegel 017]
0 On regular lattice: Cluster states

2

Note: X =0, Y =0y, Z =0,



First result: the post-POVM state
IS an encoded graph state

TA) = X Foa [Paxir) = Q) Foun X [9)e

vEV (L) vEV (L) e€E(L)

o What is the graph? Ans. Determined by two rules
> Rule 1: merge neighboring sites of same POVM outcome

+» Encoding:

merge sites
F— F,, ) ‘6> = ’(000)’(111)’ > = ‘% _73>
wev rdlet +o a domain ’T> = ‘(111),(000),...> =|=2, g>

- can be reduced to single site

H [keep any one
inter-domain edge]

S a [remove all

m=even inter-domain edges]

> Rule 2: modulo-2 inter-domain edges

X,z m= odd

3




Example

o For convenience use brick-wall structure to represent honeycomb

o Use open boundary condition (terminated by spin-1/2’s, not drawn)

POVM outcomes: x (blue), vy (green) or z (red)

merge sites
!;
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@ @
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Second result: can convert typical graph
states to cluster states

o Typical graphs are in percolated phase (with macroscopic # of vertices | V|,
edges |E|, independent loops or Betti # B)

. I H I 1
Sllte plerco atloln by deletion > Honeycomb: deg=3

C =20 -+
TR e |E|=1.5|V|, B=0.5|V|
0.8 if’f‘? i
5 osl W F > Typical graphs: deg=3.52
= o4l tﬁ - |E|=1.76|V|, B=0.76|V|
"0 %a > Square lattice: deg=4
0 . G -aee=
0 0.1 02 03 04 05 06 07 o038 | E I =2 | V | , B= I VI
Pdelete

0 Can identify a suitable subgraph and trim it down (by Pauli meas.) to a square lattice:
e}

gg - EE - 5555




Summary

o We showed that the 2D AKLT state on the honeycomb lattice
is universal for measurement-based quantum computation

|. First approach: constructed a scheme for measurement-
based quantum computation (single + two-qubit gates)

v" arXiv: 1009.3491 by Miyake

ll. Second approach: showed it can be locally converted to a cluster state

v’ arXiv: 1009.2840 by Wei, Affleck & Raussendorf



