QIP, Jan. 10 (2011) @ Singapore

The 2D AKLT state is universal for measurement-based quantum computation

Tzu-Chieh Wei, Ian Affleck, Robert Raussendorf

¹University of British Columbia, Canada

<u>Akimasa Miyake</u>

²Perimeter Institute for Theoretical Physics, Canada

Outline of the talk

Introduction

- measurement-based quantum computation (MQC)
- 2D AKLT state

Part 1 (Miyake)

Simulating a quantum circuit model (arXiv:1009.3491)

Part 2 (Wei)

Transforming into a 2D cluster state (arXiv:1009.2840)

Measurement-based quantum computation

universal QC model by

- many-particle entanglement
- single-particle measurements
- communication of outcomes

significant questions

- characterization of entanglement which enables one to simulate universal quantum computation (BQP)?
- practical implementation? (large-scale entanglement)

[MQC on a 2D cluster state: Raussendorf & Briegel, PRL '01; Raussendorf, Browne, Briegel, PRA '03]

2D AKLT state

$$|g\rangle = \bigotimes_{v}^{vertex} P_{v}^{S=\frac{3}{2}} \bigotimes_{e}^{edge} |singlet\rangle_{e}$$

[Affleck, Kennedy, Lieb, Tasaki, PRL '87; CMP '88]

 ground state of antiferromagnetic <u>two-body</u> Hamiltonian of spin 3/2's on 2D hexagonal lattice

$$H = J \sum_{(k,k')}^{\text{n.n.}} \left[\underbrace{\mathbf{S}_{k} \cdot \mathbf{S}_{k'} + \frac{116}{243} (\mathbf{S}_{k} \cdot \mathbf{S}_{k'})^{2} + \frac{16}{243} (\mathbf{S}_{k} \cdot \mathbf{S}_{k'})^{3}}_{\text{P}^{3} : \text{projector to total spin 3 f}} \right],$$

P³ : projector to total spin 3 for every pair

- valence bond solid state (to materialize a spin liquid)
- merits as resource: a preparation by cooling stability of a gapped ground state

Part 1 FAQ: where are qubits?

edge state (spin 1/2): emergent fractional degree of freedom, localized at boundary

- area law of entanglement
- stay in degenerate ground states (cf. topological feature)

$$|g\rangle = \bigotimes_{v}^{vertex} P_{v}^{S=\frac{3}{2}} \bigotimes_{e}^{edge} \underbrace{\frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)_{e}}_{singlet} = \sum_{\alpha=\pm\frac{3}{2},\pm\frac{1}{2}} tr \left[\prod_{v}^{vertex} A[\alpha_{v}] |\alpha_{v}\rangle\right]$$

"symmetric 3-indices tenors"

$$A[+\frac{3}{2}^{\mu}] \sim 000^{\mu}$$

 $A[+\frac{1}{2}^{\mu}] \sim \frac{1}{\sqrt{3}} \left(001 + 010 + 100^{\mu} \right)$

upshot of QC: scattering process among edge states

Challenge to construct MQC Protocol

entanglement network to gate-teleport quantum information

```
cluster-state has a VBS-like
entanglement structure (PEPS)
```

[Gottesman, Chuang, Nature'99] [Raussendorf, Briegel, PRL'01] [Verstraete, Cirac, PRA'04] [Childs, Leung, Nielsen PRA'05] [Gross, Eisert, PRL'07; Gross, Eisert, Schuch, Perez-Garcia, PRA'07]

• steering quantum information in a controllable (quantumcircuit) manner

How to get unitary maps? How to distinguish space and time?

Outline of MQC Protocol

How to get unitary maps and composed them?

 measurement at every site, depolarizing <u>randomly</u> into one of the three axes

$$\begin{split} \{M^{x}, M^{y}, M^{z}\} \\ M^{\mu} &= \sqrt{\frac{2}{3}} (|\frac{3}{2}^{\mu}\rangle \langle \frac{3}{2}^{\mu}| + |-\frac{3}{2}^{\mu}\rangle \langle -\frac{3}{2}^{\mu}|) \\ \sum_{\mu=x,y,z} M^{\mu\dagger} M^{\mu} &= 1 \end{split}$$

matched bond: $\mu_k = \mu_{k'}$

1'. classical side-computation:

in a typical configuration of matched bonds, identifying a backbone (which excludes all sites with triple matched bonds)

2. <u>deterministic</u> quantum computation

Ideas behind MQC Protocol

How to get unitary maps and composed them?

 a (mutually-unbiased) pair of standard and complementary measurements
 <= non-matched bond

- "concentration" from 2D (3-way symmetric) correlation
 - = classical statistical correlation (via random sampling)
 - + "more rigid" quantum correlation

Universal gates and space-time structure

complementary basis: x r y r z r

classical information time: two bits sent in the <u>same</u> direction at backbone site: space: two bits sent in <u>opposite</u> directions $\Upsilon = X^{a^x} Z^{a^z}$ (no net asymmetry in directions)

Summary of Part 1

ground state of a realistic 2D condensed matter system (valence bond solid phase) can be harnessed as a resource of measurement-based quantum computation.

new perspective to traditionally-intractable complexity of 2D quantum systems

A. Miyake, quantum computational capability of a two-dimensional valence bond solid phase, arXiv:1009.3491

Second part: Converting AKLT state to cluster state

Tzu-Chieh Wei, Ian Affleck and Robert Raussendorf

Ref: arXiv: 1009.2840

Spin-3/2 AKLT state on honeycomb

- □ Each site contains three virtual qubits
- Two virtual qubits on an edge form a singlet
- □ Projection ($P_{S,v}$) onto symmetric subspace of 3 qubits at each site

 $\mathbf{\Theta}$

singlet $|01\rangle - |10\rangle$

The POVM in terms of virtual qubits

□ Three elements satisfy:

$$\begin{aligned} F_{v,x}^{\dagger}F_{v,x} + F_{v,y}^{\dagger}F_{v,y} + F_{v,z}^{\dagger}F_{v,z} &= P_{v,\text{sym}} \\ F_{v,z} &= \sqrt{\frac{2}{3}}(|000\rangle\langle000| + |111\rangle\langle111|) \\ F_{v,x} &= \sqrt{\frac{2}{3}}(|+++\rangle\langle+++|+|---\rangle\langle---|) \\ F_{v,y} &= \sqrt{\frac{2}{3}}(|i,i,i\rangle\langle i,i,i|+|-i,-i,-i\rangle\langle-i,-i,-i|) \end{aligned}$$

[*Wei*,*Affleck* & *Raussendorf* '10 *Miyake* '10]

$$Z|0/1\rangle \equiv \pm |0/1\rangle$$
$$|\pm\rangle \equiv (|0\rangle \pm |1\rangle)/\sqrt{2}$$
$$X|\pm\rangle \equiv \pm |\pm\rangle$$
$$|\pm i\rangle \equiv (|0\rangle \pm i|1\rangle)/\sqrt{2}$$
$$Y|\pm i\rangle \equiv \pm |\pm i\rangle$$

→ In terms of spin-3/2, $F_{v,a}$ projects onto S_a =± 3/2 subspace

□ POVM outcome (*x*,*y*, or *z*) is random: $a_v = \{x, y, z\} \in A$ for all sites v

• Post-POVM state becomes $|\Psi(\mathcal{A})\rangle = \bigotimes_{v \in V(\mathcal{L})} F_{v,a_v} |\Phi_{AKLT}\rangle = \bigotimes_{v \in V(\mathcal{L})} F_{v,a_v} \bigotimes_{e \in E(\mathcal{L})} |\phi\rangle_e$ singlets

First result: the post-POVM state is an encoded graph state

$$|\Psi(\mathcal{A})\rangle = \bigotimes_{v \in V(\mathcal{L})} F_{v,a_v} |\Phi_{\text{AKLT}}\rangle = \bigotimes_{v \in V(\mathcal{L})} F_{v,a_v} \bigotimes_{e \in E(\mathcal{L})} |\phi\rangle_e$$

Graph states: stabilizer formalism

□ Stabilizer generators:

$$K_v = X_v \bigotimes_{u \in \operatorname{Nb}(v)} Z_u$$

□ On arbitrary graph: graph states

[Raussendorf & Briegel 01']

□ On regular lattice: Cluster states

$$\begin{array}{c} \hline \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcalO \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcalO \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{O} \\ \mathcalO \\ \end{array} \\ \begin{array}{c} \mathcalO \\ \end{array} \\ \begin{array}{c} \mathcalO \\ \mathcalO \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcalO \\ \end{array} \\ \begin{array}{c} \mathcalO \\ \mathcalO \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcalO \\ \end{array} \\ \begin{array}{c} \mathcalO \\ \mathcalO \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcalO \\ \end{array} \\ \begin{array}{c} \mathcalO \\ \mathcalO \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcalO \\ \end{array} \\ \begin{array}{c} \mathcalO \\ \mathcalO \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcalO$$

Note: $X \equiv \sigma_x, \ Y \equiv \sigma_y, \ Z \equiv \sigma_z$

First result: the post-POVM state is an encoded graph state

$$|\Psi(\mathcal{A})\rangle = \bigotimes_{v \in V(\mathcal{L})} F_{v,a_v} |\Phi_{\text{AKLT}}\rangle = \bigotimes_{v \in V(\mathcal{L})} F_{v,a_v} \bigotimes_{e \in E(\mathcal{L})} |\phi\rangle_e$$

□ What is the graph? Ans. Determined by two rules

> Rule 1: merge neighboring sites of same POVM outcome

Example

□ For convenience use brick-wall structure to represent honeycomb

Use open boundary condition (terminated by spin-1/2's, not drawn)
 POVM outcomes: x (blue), y (green) or z (red)

Example cont'd

Second result: can convert typical graph states to cluster states

 Typical graphs are in percolated phase (with macroscopic # of vertices |V|, edges |E|, independent loops or Betti # B)

□ Can identify a suitable subgraph and trim it down (by Pauli meas.) to a square lattice:

Summary

- We showed that the 2D AKLT state on the honeycomb lattice is universal for measurement-based quantum computation
- I. First approach: constructed a scheme for measurementbased quantum computation (single + two-qubit gates)

✓ arXiv: 1009.3491 by Miyake

II. Second approach: showed it can be locally converted to a cluster state

✓ arXiv: 1009.2840 by Wei, Affleck & Raussendorf