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I. MOTIVATIONS

Quantum computation promises exponential speedup
over classical computation by exploiting the quantum
mechanical nature of physical processes [1]. In addition
to the standard circuit models, surprisingly, local mea-
surement alone provides the same power of computation,
given only a prior sufficiently entangled state [2]. Clus-
ter states are the first known resource states for such
measurement-based quantum computation (MBQC) [2,
3]. They can arise as the unique ground state of five-
body interacting Hamiltonian on a square lattice; how-
ever, they cannot be the exact unique ground state of
any two-body Hamiltonian [4, 5]. Fundamentally, could
there be unique ground states of any two-body interact-
ing Hamiltonian that are universal resources?

In searching for such resourceful ground states of phys-
ically reasonable Hamiltonians, Chen et al. made some
important progress by constructing a spin-5/2 resourceful
state on a honeycomb lattice, which is an unique ground
state of a two-body interacting Hamiltonian [6]. Later
Cai et al. approached this issue by patching ground
states of Affleck-Kennedy-Lieb-Tasaki (AKLT) chains [7]
into an effective 2D spin-3/2 state [8]. This construction
reduced the local Hilbert-space dimension from 6 of Chen
et al. to 4. However, both engineered Hamiltonians, even
though consisting of only two-body interaction, turn out
be complicated and possess less symmetry than the orig-
inal AKLT Hamiltonians.

After many works on utilizing AKLT chains for quan-
tum computation [9–11], it remains open whether any of
the original 2D AKLT states can be universal resources
for MBQC.

II. RESULTS

Our main result is that the ground state of the AKLT
model (of spin-3/2) on the 2D honeycomb lattice can
be reduced to a two-dimensional cluster state by local
operations, and therefore is a universal resource state
for MBQC. This transformation proceeds in two steps.
(i) First, the AKLT state is mapped to a random en-
coded graph state by a local positive-operator-value-
measure (POVM) measurement. (ii) Second, if the as-
sociated graph is sufficiently connected, the graph state
can be further transformed by local measurements into
a two-dimensional cluster state. In a Monte Carlo sim-
ulation, we demonstrated that the required connectiv-
ity properties hold for typical graphs. Beyond honey-
comb, our method applies to any trivalent lattice, such

as Archimedean lattices: (3, 122), (4, 6, 12) and (4, 82),
having bond percolation thresholds greater than 2/3 [12].

The significance of our results is that the ground state
for the 2D AKLT spin-3/2 Hamiltonian

∑
(i,j)∈E(L) f(~Si ·

~Sj), where f(x) is a third-order polynomial [7], can be
used as a quantum computational resource. The Hamil-
tonian is highly symmetric, i.e., invariant under rotation
and is only nearest-neighbor interacting. The ground
state is known to be unique for periodic boundary con-
ditions [7]. The local Hilbert space dimension for such
two-body interacting ground-state resource is also among
the lowest that have been found so far, i.e., 4 [8]. Ours is
probably the first one that shows a physically motivated
quantum state in condensed-matter physics and in higher
than one dimension turns out to provide a universal re-
source for measurement-based quantum computation.

III. INTUITIVE EXPLANATIONS

In this section we give slightly more detailed descrip-
tion and intuitive explanations for our results.

A. AKLT states

The AKLT state on the two-dimensional honeycomb L
can be described in the following way. First, each vertex
or site v of L contains three virtual spin-1/2 particles,
lying at the ends of the three incoming edges (or bonds);
see Fig. 1. The two virtual spins residing on the two ends
of an edge e = {u, v} ∈ E(L) linking the two nearest
neighbors u and v are in the singlet state: |φ〉e ≡ |01〉 −
|10〉 (omitting the normalization). (Note that |0〉 ≡ | ↑〉
and |1〉 ≡ | ↓〉 are the two basis states of spin-1/2.)

Then at each lattice site v, a projection is made on the
three virtual spins into the symmetric subspace

ΠS,v ≡ |000〉〈000|+ |W 〉〈W |+ |W 〉〈W |+ |111〉〈111|,(1)

|W 〉 ≡ 1√
3

(|001〉+ |010〉+ |100〉), (2)

|W 〉 ≡ 1√
3

(|110〉+ |101〉+ |011〉), (3)

where the four states |000〉, |111〉, |W 〉 and |W 〉 constitute
the basis states for the symmetric subspace of three spin-
1/2 particles and they can also be regarded as the four
basis states for a spin-3/2 particle |3/2, 3/2〉, |3/2,−3/2〉,
|3/2, 1/2〉 and |3/2,−1/2〉, respectively, via the standard
addition of angular momenta, where we have assumed
implicitly the quantization is along z-axis.
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FIG. 1: Schematic picture of AKLT state on the honeycomb
lattice L. Each site contains three virtual spin-1/2 particles,
each of which forms a singlet bond |01〉− |10〉 with the neigh-
boring virtual spin-1/2. The rectangle represents a projection
from the three virtual spins to their symmetric subspace, re-
sulting in a local four-level (spin-3/2) system. Only a region
on the honeycomb lattice is shown. The boundary condition
can be chosen to be periodic or open and terminated by spin-
1/2 particles.

To map the three virtual spin-1/2 particles into a phys-
ical spin-3/2 particle, only a relabeling is needed:

Pv = |3/2〉〈000|+ |−3/2〉〈111|+ |1/2〉〈W |+ |−1/2〉〈W |.
(4)

Thus the AKLT state on the honeycomb lattice can be
viewed as one with a spin-3/2 per site (which can be
regarded as composed of three virtual spin-1/2 particles),
written as

|AKLT〉 :=
⊗

v∈V (L)

PvΠS,v

⊗
e∈E(L)

|φ〉e, (5)

where we use V (L) and E(L) to denote the set of vertices
and edges, respectively, of graph L.

B. POVM

In order to convert the state of multiple 4-level (spin-
3/2) particles to that of qubits, we need to preserve a
local two-dimensional structure. Naively speaking, this
can be achieved by rank-2 projectors, such as |3/2〉〈3/2|+
|−3/2〉〈−3/2|. However, there is a finite probability that
the state fails to be projected in the desired subspace.
This motivates us to employ a generalized measurement
or POVM to maximize the probability of useful outcome.
In fact the following POVM, 11 = Ex + Ey + Ez with
Eµ = F †µFµ, ensures that any of the three local outcomes
(labeled by x, y or z) is useful,

Fz ≡
√

2
3

(|3/2z〉〈3/2z|+ |−3/2z〉〈−3/2z|) (6)

Fx ≡
√

2
3

(|3/2x〉〈3/2x|+ |−3/2x〉〈−3/2x|) (7)

Fy ≡
√

2
3

(|3/2y〉〈3/2y|+ |−3/2y〉〈−3/2y|), (8)
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FIG. 2: Graphical rules for transformation of an AKLT state
into an encoded graph state by the local POVMs. a) AKLT
state on a honeycomb lattice L, with a random pattern A of
local POVM outcomes x, y, z. b) Edges of L with same-type
endpoints are contracted. c) Edges of even multiplicity are
deleted, edges of odd multiplicity are converted into standard
edges. The resulting graph is G(A).

where we have explicitly labeled the quantization axes.
Thus, no matter what the outcome is, there is locally a
two-level structure. The AKLT state has the rotational
symmetry that is reflected in the selection of the three
POVM elements. Once the measurement is carried out,
the symmetry is broken randomly.

Whenever neighboring sites share the same outcome,
labeled by µ, there are only two possible configu-
rations for these two spins that can appear in the
post-measurement state: |3/2µ〉A| − 3/2µ〉B and | −
3/2µ〉A|3/2µ〉B . Physically, this reflects the antiferro-
magnetic properties of the AKLT state [7]. More im-
portantly and generally, this means that when a set of
connected sites share the same POVM outcome, they ef-
fectively constitute a single qubit. On the other hand,
two neighboring sites that do not have the same outcome
are two distinct qubits.

C. Encoded graph states

Using stabilizer formalism [13], we showed that for
all POVM outcomes the resulting post-POVM state is
a graph state. The detailed proof is in the technical ver-
sion of this work [14]. The graph structure depends on
the POVM outcomes, but can be constructed as follows;
see Fig. 2 for illustration. First all connected sites that
share the same POVM outcome will be collected in a set,
which we call a domain. The domains are the vertices
in the random graph, labeled by G(A). If the number
of the original honeycomb edges connecting two different
domains is even, then in the random graph there is no
edge between these two domains. However, if the number
of honeycomb edges connecting two different domains is
odd, then there is an edge between these two domains.
This can be understood by the stabilizer formalism: in-
tuitively, there is a X − Z connection between two sites
on the opposite domains.

Even though each domain may contain many physical
spins, by local measurement, they can be reduced to a
single one. The idea is simple. A GHZ-like state, |00..0〉⊗
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|ψ1〉+ |11..1〉⊗ |ψ2〉, can be locally converted to one with
one qubit fewer by measuring, say, the first qubit in |0〉±
|1〉 basis. The post-measurement state, excluding the
first qubit, becomes |0..0〉 ⊗ |ψ1〉 ± |1..1〉 ⊗ |ψ2〉. One can
continues until |0〉 ⊗ |ψ1〉 ± |1〉 ⊗ |ψ2〉. Effectively, the
domain can be regarded as a single physical qubit.

Our simulations showed that for a honeycomb lat-
tice of L × L sites, the typical random graph contains
macroscopic numbers of edges and vertices: (1) 0.496L2

vertices (2) 0.872L2 edges, respectively, as well as (3)
0.377L2 independent cycles. For details of our methods,
see Ref. [14]. This indicates that there are sufficient num-
ber of qubit and entanglement left after the POVM.

D. Random graph states to 2D cluster states

By extending the proof in Ref. [15], we showed that
if the two-dimensional random graph is in the connected
phase (in the sense of percolation), the associated graph
state can be locally converted to a 2D cluster state.

Intuitively, if the graph is in the connected phase, one
can always identify a subgraph that has the topological
structure of a 2D square lattice. One then uses local mea-
surement in X, Y or Z basis to delete unwanted vertices
and contract edges. The detail is referred to Ref. [14].

We performed Monte Carlo simulations and obtained
that the typical random graphs are indeed deep in the
percolated phase and in order to destroy the spanning
structure of the graph one needs to delete randomly every
edge with a probability at least p(bond)

del ≈ 0.43 or delete

randomly every vertex with a probability at least p(site)
del ≈

0.33. Therefore, the graph state can be converted to a
2D cluster state.

IV. CONCLUDING REMARKS

We have demonstrated that the 2D AKLT state,
the ground state of an isotropic, two-body interacting
Hamiltonian of spin-3/2, is a universal resource state
for measurement-based quantum computation. Our ap-
proach applies to other 2D trivalent lattice, such as
Archimedean lattices: (3, 122), (4, 6, 12) and (4, 82),
which have bond percolation thresholds greater than
2/3 [12]. In one dimension, our approach gives an alter-
native proof that the 1D AKLT state can be reduced to
1D cluster state, recently established by Chen et al. [16].

In showing that a state can be universal for MBQC, we
have adopted the approach of establishing that the state
can be converted to any of the existing known resource
states [16–18] by local measurement, such as the cluster
state [3]. We remark that there is an alternative route,
i.e., by directly constructing a measurement scheme for
universal gates, as was done in the original one-way com-
puter [2] or the valence-bond approach [9, 19]. A recent
beautiful work by Miyake [20] used this approach and
utilized the fact that the bond percolation threshold on
honeycomb lattice is below 2/3 to reach the same conclu-
sion that the 2D AKLT state on the honeycomb lattice
is a universal resource.
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