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Setup
System, Hg, s Bath, Hp, g
ds = dim(Hyg) dp > dg
HsB
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¥y = Trp[y]
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H =HsQM+1QH g+ FHsp — =1i[¢f, S
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Equilibration

Theorem 1 (Equilibration [1])

If 7€ has non-degenerate energy gaps, then for every o = |1o) (o]
there exists a w® such that:

- d2
D7, wd) < .

1
2

[1] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103



Non-degenerate energy gaps

€ has non—degenerate energy gaps iff:
Ey, - E =E,—-E,

—k=IAm=n V k=mAl=n

Intuition: Sufficient for 5Z to be fully interactive

H £ 1 +1® 4
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Effective dimension

deff 1

T e (EBrlwo) [

Intuition: Dimension of supporting energy subspace
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Equilibration

Theorem 1 (Equilibration [1])

If 7€ has non-degenerate energy gaps, then for every o = |1o) (o]
there exists a w® such that:

- d2
D(yf,wd) <

1
2

— If d°ff > d% then v} equilibrates.

[1] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103
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Maximum entropy principle

Theorem 2 (Maximum entropy principle [2])

If Tr[A 4] equilibrates, it equilibrates towards its time average
Tr[A ] = Tr[A ] = Tr[Aw],

and

W= o
i

is the dephased state that maximizes the von Neumann entropy, given
all conserved quantities.

[2] C. Gogolin, M. P. Mueller, and J. Eisert, (to appear in PRL), 1009.2493
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Time averaging

o — w is a pinching = w maximizes entropy.
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Maximum entropy principle

Theorem 2 (Maximum entropy principle [2])

If Tr[A 4] equilibrates, it equilibrates towards its time average
Tr[A ] = Tr[A ] = Tr[Aw],

and

W= o
i

is the dephased state that maximizes the von Neumann entropy, given
all conserved quantities.

= Maximum entropy principle from pure quantum dynamics.

[2] C. Gogolin, M. P. Mueller, and J. Eisert, (to appear in PRL), 1009.2493
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Thermalization is a complicated process

Q

Thermalization implies:
Equilibration [1]
Subsystem initial state independence [2]
Weak bath state dependence [4]
Diagonal form of the subsystem equilibrium state [7]
Gibbs state w® = Trg[w] ~ e=8 #'s [4]

[1] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103
[2] C. Gogolin, M. P. Mueller, and J. Eisert, (to appear in PRL), 1009.2493

[4] A. Riera, C. Gogolin, and J. Eisert, (unpublished), 1101.7?77

[7] C. Gogolin, PRE 81 (2010) no. 5, 051127
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Level counting with no coupling

Ho=Hs1+1QH#p

[ ]
I ]

E E+ A

Ey

[3] S. Goldstein, PRL 96 (2006) no. 5, 050403



Under what conditions do quantum systems thermalize? = Thermalization

Level counting with no coupling

Hoy=HsR1+1QHp
<E,£0>|w<m°>|E,io>>T : '

E E+ A

[3] S. Goldstein, PRL 96 (2006) no. 5, 050403



Under what conditions do quantum systems thermalize? = Thermalization

Level counting with no coupling

Hoy=HsR1+1QHp
<E,£°>|w<n°>|E,ﬁ°>>T : '

E E+ A

Well known fact [3]:

no coupling # bath states in [E — E, E — EZ + A]
S(0) l B f_; S S
W X Z QA(E — E) |EQ)(ER|
k

[3] S. Goldstein, PRL 96 (2006) no. 5, 050403
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Level counting with no coupling

Hoy=HsR1+1QHp
<E,£°>|w<n°>|E,ﬁ°>>T : '

i Ey,
E E+A
Well known fact [3]:

no coupling # bath states in [E — Ey, E — EY + A]

5(0) l B s Sy S —BES | S\ S
wn' T X Z Qp(E — EY) |EQ)(ER| ~ Ze EER)(ER|

k k
exponentially dense spectrum

[3] S. Goldstein, PRL 96 (2006) no. 5, 050403
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Perturbative coupling || 7 sp ||~ < gaps(#) ...

m ...is unrealistic as the spectrum of 7y becomes exponentially dense.
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Perturbative coupling || 7 sp ||~ < gaps(#) ...

m ...is unrealistic as the spectrum of 7#y becomes exponentially dense.

m ...provably prevents thermalization because

perturbative coupling

Il 2]

effective entanglement in the eigenbasis R(tg) is small

| @

absence of initial state independence.

ID(wS(l)’wS(Z)) < D(w{?(l)’w{?@)) o R(’(/Jg(l)) _ R(wg@))

[2] C. Gogolin, M. P. Mueller, and J. Eisert, (to appear in PRL), 1009.2493
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Perturbative coupling || 7 sp ||~ < gaps(#) ...

m ...is unrealistic as the spectrum of 7y becomes exponentially dense.

m ...provably prevents thermalization because

perturbative coupling

Il 2]

effective entanglement in the eigenbasis R(tg) is small

Il 2]

absence of initial state independence.
D(w M, w) < Ds ™, 45 ) — Ry ) — R ™)

— Refutes wide spread believe that “non-integrable models thermalize.”

[2] C. Gogolin, M. P. Mueller, and J. Eisert, (to appear in PRL), 1009.2493
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m Naive perturbation theory fails.
m Realistic weak coupling: gaps(72) < || #sB [loo € A

[4] A. Riera, C. Gogolin, and J. Eisert, (unpublished), 1101.777?
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Realistic weak coupling

m Naive perturbation theory fails.
m Realistic weak coupling: gaps(72) < || #sB [loo € A

Theorem 3 (Corollary of a theorem from [4])

If|| 7 sB ||co € A the dephased states wg(o) and ws are close to each
other in the sense that

S(0 H 3B ||oo
D(wd,wi ") £ 3 ||2AH

[4] A. Riera, C. Gogolin, and J. Eisert, (unpublished), 1101.777?
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Consequences

= Trplwn] = Wi = plipbs

[4] A. Riera, C. Gogolin, and J. Eisert, (unpublished), 1101.777?



Under what conditions do quantum systems thermalize? = Thermalization

Consequences

= Trplwn] = WS & Pibbs

“Theorem” 5 (Conclusion [4])

Assume QE(E — E,f) becomes exponentially dense to higher energies.

(Kinematic)
If the coupling is weak || 75 |loo < A, almost all pure states from a
microcanonical subspace [E, E + A] are locally close to a Gibbs state.

(Dynamic)

If the Hamiltonian has non-degenerate energy gaps all initial states ¢n
with a flat energy distribution in [E, E'+ A] locally equilibrate towards a
Gibbs state, even if they are initially far from equilibrium.

[4] A. Riera, C. Gogolin, and J. Eisert, (unpublished), 1101.777?
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A quantum algorithm for Gibbs state preparation

[4] A. Riera, C. Gogolin, and J. Eisert, (unpublished), 1101.777?
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A quantum algorithm for Gibbs state preparation

Quantum circuit

‘0)11 |

U() : Uq—l Uq : U'rfl wac

[4] A. Riera, C. Gogolin, and J. Eisert, (unpublished), 1101.777?
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m No knowledge about .#7g is required.

m The algorithm uses partial phase estimation
to prepare wn.

m Rigorous trace distance error bounds.

m Explicit runtime:

m polynomial dependence on n
m exponential dependence on

(complementing quantum Metropolis)
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And there is more. ..

What | didn’t talk about:
m Thermalization in exactly solvable models [5, 6]
m A strong connection to decoherence [7]

m Measure concentration [8, 1, 9, 10]

The major open question:

m Time scales. How long does it take to
equilibrate/thermalize/decohere?

[1] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103
[5] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, PRL 100 (2008) 030602
[6] M. Cramer and J. Eisert, NJP 12 (2010) 055020

[7] C. Gogolin, PRE 81 (2010) no. 5, 051127

[8] S. Popescu, A. J. Short, and A. Winter, Nature Physics 2 (2006) no. 11, 754

[9] M. Mueller, D. Gross, and J. Eisert, 1003.4982

[10] C. Gogolin, Master's thesis, 2010, 1003.5058
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