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Quantum mechanics is generally regarded as a fundamen-
tal theory of physics. As such, it should be able to pro-
vide us with a microscopic explanation of all phenomena we
observe in macroscopic systems, including irreversible pro-
cesses such as thermalization. However, its unitary time evo-
lution seems to be incompatible with irreversibility, leading to
an apparent contradiction to many aspects of thermodynam-
ics. This apparent contradiction is part of the long-standing
problem of the emergence of classicality from quantum me-
chanics. The question of how quantum many-body systems in
non-equilibrium eventually equilibrate and assume properties
resembling the ones familiar from statistical mechanics has
thus—quite unsurprisingly—a very long tradition [1].

Recently, this old question has received an enormous
amount of attention [2–19], including our work [20–22], and
there have been significant new insights. This renewed atten-
tion is partly driven by recent experimental advances, render-
ing it possible to probe coherent non-equilibrium dynamics
under the controlled conditions offered by cold atoms in opti-
cal lattices [24], as well as by new mathematical and numeri-
cal techniques. Such systems can be seen as a first practically
useful instance of a quantum simulator, in the sense that it
simulates the dynamics under a meaningful well-defined local
Hamiltonian and outperforms even the most elaborate, state-
of-the art classical numerical techniques based on matrix-
product states [24]. Clearly, rigorous analytic results are im-
portant to compare the experiments with theoretical predic-
tions. Moreover, a good theoretical understanding of thermal-
ization is the key to finding methods of preventing decoher-
ence in such systems, an important step towards more fault-
tolerant computation schemes.

A lot of the recent work on thermalization has been in-
spired by new mathematical tools from quantum informa-
tion theory, like concentration of measure arguments [8–
12, 16, 20, 21], quantum central limit theorems, and Lieb-
Robinson bounds [4]. Their successful application to the fun-
damental questions of irreversibility is an impressive demon-
stration of the usefulness and broad applicability of ideas and
methods from quantum information science. Our results [20–
22] that we present are exactly in this line of thought:

Pure state quantum statistical mechanics. We consider a
closed quantum system, consisting of a “system” S and a
“bath”B evolving unitarily in time. That is, the global state of
the full system is always a pure state that evolves reversibly.

Thus, relaxation towards some equilibrium state in the usual
sense is impossible, reflecting the apparent contradiction be-
tween quantum theory and thermodynamics mentioned above.

However, relaxation is still possible in a more general
sense: we say that an observable equilibrates if its expectation
value is close to some (equlibrium) value for almost all times
and say that a subsystem S equilibrates if the expectation val-
ues of all local observables on this subsystem equilibrate. We
are particularly interested in the case that S is a small subsys-
tem of a larger quantum many-body system, but our results are
not restricted to that situation.

A maximum entropy priciple from microscopic dynamics.
As we have found in Ref. [22], applying very basic quantum
information tools to this simple model can already yield sur-
prising insights. Suppose we fix an arbitrary Hamiltonian H
on the global system. Every Hamiltonian H defines a set of
conserved observables. In the non-degenerate case, they are
exactly the linear combinations of projectors onto the eigen-
states of H , in the degenerate case, they are the observables
with support on the blocks corresponding to the degenerate
subspaces. If the expectation value Tr[Aψt] of an observable
A equilibrates in the sense defined above, then it must equili-
brate towards its time average Tr[Aψt] = Tr[Aψt].

Clearly, the time averaged state ω = ψt of a state ψt under-
going unitary time evolution is given by ω = P (ψ0), where
P (ψ0) =

∑
j πjψ0πj , where the πj are the projections onto

(possibly degenerate) eigenspaces. Every state ρ that gives
the same values for all conserved observables as ψ0 satisfies
P (ψ0) = P (ρ), and a simple application of the pinching in-
equality [22] on the Schur concave entropy function proves
that ω = P (ψ0) is the state having maximal entropy among
all such states.

Theorem 1 (Maximum entropy principle [22]). If the expec-
tation value of an observable A equilibrates, then it neces-
sarily equilibrates towards Tr[Aω], where ω is the state that
maximizes the von Neumann entropy, given the expectation
values of all conserved quantities.

While the mathematical content of the theorem is essen-
tially obvious, it still proves an open conjecture from the
physics literature [3, 18] that has attracted a considerable
amount of attention.

Measure concentration and equilibration. Conventional
statistical mechanics relies on ensemble averages; most no-
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tably the microcanonical and canonical ensemble. In the
quantum setting, the microcanonical ensemble is used in sit-
uations where all one knows about a closed physical system
is that the value of some observable corresponding to a con-
served quantity lies in some interval. The canonical ensemble
applies to small subsystems of large microcanonical systems.

The phenomenon of measure concentration can be used to
justify the microcanonical and canonical ensemble without
added randomness, from nothing but pure Quantum Mechan-
ics and the intrinsic quantum randomness due to entanglement
with an environment. The results of Popescu at al. [10] sug-
gest that the equal a priori probability postulate is dispens-
able: Instead of assuming that the microcanonical state yields
a good description of the system it is possible to prove that for
almost all pure states compatible with a microcanonical con-
straint of large systems all subsystems behave as if the sys-
tem were in the corresponding microcanonical state. This is a
statement about how typical individual instances of an ensem-
ble are and was called General Canonical Principle.

In Ref. [20] we have extended the results of Ref. [10] to
variances and higher moments, and in Refs. [20, 23] we have
proved typicality for other ensembles, like the mean energy
ensemble.

Moreover, under the assumption of non-degenerate energy
gaps, Reimann and Linden et al. [9, 12] proved rigorously
under which conditions equilibration (but not necessarily ther-
malization) happens. The important certificate quantifying the
quality of equilibration is the effective dimension deff(ω). It is
a measure for how many energy eigenstates contribute signif-
icantly to the initial state. Whenever it is large, all small sub-
systems of a large quantum system equilibrate in trace norm.
That is, the reduced state on the subsystem ρSt remains within
a small trace distance from a certain “equilibrium” state ωS

for almost all times. This means that the time average of their
trace distance D(ψSt , ωS) is small in the sense that [9]

D(ψSt , ωS) ≤
1

2

√
d2
S

deff(ω)
, (1)

where dS is the dimension of the Hilbert space of the small
system. A similar result for the speed of the reduced state

vS(t) = lim
δt→0

D(ρSt , ρSt+δt)
δt

(2)

was established by Linden et al. [8], namely

vS(t) ≤ ‖H S ⊗1+ H SB ‖∞

√
d3
S

deff(ω)
. (3)

Using concentration of measure techniques, it is possible to
prove that in large quantum systems, almost all states have a
large effective dimension deff(ω) [9, 20], such that the right
hand side of both (1) and (3) is typically small.

Absence of initial state independence. In systems that be-
have thermodynamically, the equilibrium expectation values

of local observables on small subsystems should be indepen-
dent of the initial state of the subsystem. In Ref. [22], we
investigate under what conditions this is possible: we prove
a sufficient condition for the absence of initial state indepen-
dence.

Interestingly, a quantity R that we call effective entangle-
ment in the eigenbasis plays a central role in our result. We
show that whenever the effective entanglement in the eigen-
basis is small, subsystem initial state independence cannot be
satisfied. That is to say, small subsystems of large closed
quantum systems remain distinguishable if they are initially
well distinguishable even if the remainder (bath) of the sys-
tem is started in precisely the same initial state.

More in detail, consider an initial product state ψ0 =
ψS0 ⊗ψB0 on S⊗B, and a global Hamiltonian H with eigen-
projectors πk. Our quantity is

R(ψ0) :=
∑
k

〈ψ0|πk|ψ0〉D
(
TrB(πkψ0πk)

〈ψ0|πk|ψ0〉
, ψS0

)
, (4)

where D is the trace distance. If this is small, then all eigen-
projectors πk that have significant overlap with ψ0 locally
look very similar to ψS0 , which means that those relevant
eigenstates contain very little entanglement. Our technical re-
sult is as follows: Suppose we have two global initial product
states that are different on the subsystem S (on the bath, they
may be the same, or be different, this does not matter). Then,
if the quantity R of both initial states is small, and if the sys-
tem equilibrates in both cases, the corresponding equlibrium
states on S are still distinguishable:

Theorem 2 (Initial state dependence [22]). The physical dis-
tinguishability of the two local time averaged states ωS(1) and
ωS(2) of two pure initial product states

ψ
(i)
0 = ψ

S(i)
0 ⊗ φB(i)

0 , i ∈ {1, 2}

evolving under a non-degenerate Hamiltonian H with low
effective entanglement in the eigenbasis is large in the sense
that

D(ωS(1), ωS(2)) ≥ D(ψS(1)
0 , ψ

S(2)
0 )−R(ψ(1)

0 )−R(ψ(2)
0 ).

In Ref. [22], we also give an example of a natural many-
body model that fulfills the premises of this theorem, even
though it is non-integrable and hence expected to thermalize.
That is to say, the model locally equilibrates, but the local
equilibrium state depends on the details of the initial state.
This is a surprising fact given the physical expectations for
such models.

One may ask whether little entanglement in the energy
eigenstates is sufficient to find initial states ψ0 with small
R(ψ0). In Ref. [22], we use concentration of measure argu-
ments to answer this question in the positive: Whenever the
reduced energy eigenstates are all locally close to some basis,
then there exist many initial states with smallR(ψ0) and large
deff(ω).
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Equilibration and decoherence. In Ref. [21] we estab-
lished a connection between the aforementioned results on
equilibration with decoherence theory. In particular, we con-
sider the physically relevant case of decoherence due to weak,
but non-perturbative interaction with an environment (again
treating system plus environment as a closed system).

The main result of Ref. [21] can be summarized as fol-
lows: Whenever deff(ω) is large, coherent superpositions of
eigenstates of the system Hamiltonian H S with eigenvalue
differences that are larger or comparable in size with the in-
teraction energy cannot contribute significantly to the state of
the subsystem for almost all times. That is, the correspond-
ing off-diagonal elements of the reduced state ρSt in the H S

eigenbasis must be small.

Theorem 3 (Decoherence under weak interaction [21]). Con-
sider a physical system evolving under a Hamiltonian of the
form H = H S +H B +H SB and with non-degenerate
energy gaps, where H S and H B act only on the system and
bath respectively. All reduced states ρS satisfy

‖H SB ‖∞ + vS(t) ≥ max
{(k,l)}

∑
(k,l)

|ESk − ESl | |ρSkl| (5)

≥ max
kl
|ESk − ESl | |ρSkl|, (6)

where ρSkl are the matrix elements of the reduced state of the
system in the H S eigenbasis, and ESk are the corresponding
eigenvalues of H S . The maximization in (5) is performed
over all decomposition of the index set {1, . . . , d} into a set
of disjoint pairs {(k, l)}. (Note that it follows from (3) that
vS(t) is small for almost all times.)

The result is derived without making any assumptions about
the structure of the bath or about the details of the interaction.
It only uses the fact that the interaction is weak in a well-
defined sense. The rigorous inequality that we established is
stronger than naive perturbation theory, in the sense that it
proves decoherence even if the interaction is much stronger
than the gaps of the non-interaction Hamiltonian of the system
plus bath H S +H B and even if it is stronger (but not much
stronger) than the gaps of H S . Moreover, our result remains
meaningful even when the subsystem is large and its energy
spectrum thus very dense. It then still implies that coherent su-
perpositions of eigenstates with far apart energies (sometimes
called Schödinger cat states) must decohere.

Conclusions. We have employed methods from quantum
information theory to fundamental problems in quantum sta-
tistical mechanics. Our first result identifies a lack of entan-
glement in the energy eigenbasis as the reason for an “equi-
libration without thermalization” phenomenon: all local ob-
servables equilibrate but retain memory on their initial val-
ues for infinitely long time. As a second result, we have
shown that quantum systems which interact weakly with the
environment tend to evolve into convex combinations of en-
ergy eigenstates of their local Hamiltonian, thereby proving

a generic decoherence mechanism from pure Schrödinger dy-
namics. Moreover, we have resolved an open problem from
the physics literature by showing that the equilibrium state
(resulting from unitary dynamics) must necessarily satisfy a
maximum entropy principle.
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