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Sending classical data over classical channels

Alice wants to be able send one of 1/ messages' to Bob, by n uses
of some classical channel &:

» Finite set of input symbols (X); output symbols (V).
» Transition matrix: Pr(output = ylinput = z) = E(y|x).
n uses: Pr(output = y|output = x) = E(y1|z1) - - - E(yn|Tn)
Prin (M, E%™) := minimum Pr(error) for classical protocols.
Shared randomness no help (use best value of random variable).

Classical world: optimal to use (‘block length n') classical code:
Encoder: message — X™. Decoder: Y™ — decoded message.

The Q in the QIP for this talk:

PE_(M,E®™) := minimum Pr(error) with entanglement

min

assistance: Alice and Bob have shared entangled systems.

*which have equal prior probability
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min
length n with entanglement assistance.

» Capacity C(€) = max I(output : input)

input distribution
» Same with entanglement assistance for classical channels.

Corollary of Bennett, Shor, Smolin, Thapliyal (2001)
» Not the whole story. ..

PE (M, E%™): Min. Pr(error) at rate R = 1 log M and block
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Zero-error codes: Multiple channel uses (n > 1)
For composite channel £ ® &5: Input sequences
(), 24) # (x1,x2) are adjacent iff
x}, z; are adjacent or equal in G(&;) for i = 1,2.
G(& ® &) =G(E) X G(&) (strong graph product).
G(E®™) = G(E)™: (strong graph power).

e 0 M()(C5) = 04(05) =2

@ For n = 1, best zero-error rate

e is 1 bit/channel use.
(W

With two uses:

MO(C?Z) = 04(05 X 05) =5

For n = 2, best zero-error rate is
$log5 = 1.16. .. bits/channel use.
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» MZF (&) also depends only on G(£).

» 3 graph F s.t. ME(F)>My(F).

» Proof uses an entanglement assisted protocol for graphs with
special structure. Will use later exhibit prove difference in
capacities.

An orthonormal representation, in d dimensions, of a graph G is a
map: Vertices x — unit vectors |¢,) € CY, such that if z and 2’
are adjacent then (¢,|¢,/) = 0.

Theorem (ORCP Part I: CLMW)

If G(E) has an orthonormal representation in C¢ and partitions
into m cliques of size d: K1, ...,Kkm. Then there is entanglement
assisted protocol to send one of m messages with zero error.

iie. ME(G) > m and so C¥(G) > logm.

Goes like this (illustrated by m = 6, d = 4 case). ..
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measures complete

orthonormal basis

By = A{|¢pw) : 2’ € Kq}.

24_
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\ Pt K5 21\22 to |¢y) € By,

17—20 Alice makes x to channel.
Conditioned on z Bob's

18—19
+ other edges not shown... state is [¢)z)" (c.c.).

» On output y Bob only knows = € S, = {2’ : E(y|2’) > 0}. S,
is a clique so the states |1),/)*, 2’ € S, corresponding to
possible = are orthogonal so Bob can determine x, and hence
q, with certainty. M(})E(G) > m.
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The graph F': Single use separation

Graph F': Vertices adja-
cent <= share a loop.
F' has orthonormal rep.
in C* and partitions into
6 cliques of size 4.

By ORCP: M (F) >6

Independence number =

5: M()(F) = 5.
y:(1,0,0,0) 1 [13) : (0,0,1,0) |14) : (0,0,0,1)
y:(0,1,1,0) 1,0,0,—1) |¢7):(1,0,0,1) lyg) : (0,1,—1,0)
B3_ W’Q) : (1’ 17 1’ 1) W’lO) : (1’ _17 17 _1) W)11> : (17 _17 _15 1) |1/)12> : (1a 15 _17 _1)
Ba—|¢13) : (1,-1,0,0) [¢14) : (1,1,0,0)  [¢h15) : (0,0,1,1)  [¢b16) : (0,0,1,—1)
Bs—|p17) : (=1,1,1,1) [sh1s) : (1,1,1,=1) |eh1o) : (1,—1,1,1) [eh20) : (1,1,—1,1)
Bes— |'¢'21> : (170v170) |'¢22> : (07 1,0, ) ‘¢23> : (1707_1v0) |7/)24> : (07 1707_1)
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The problem

>

Examples with M¥ > M for some finite n don't settle our
original question:

Maybe classical protocols can always “catch up” with assisted
protocols as n — oo?

E.A. and classical zero-error capacities depend only on G(€):
write Co(G), CF(G) to denote their values for channels with
graph G.

> Are there graphs G with CF(G) > Cy(G)?

» No algorithm computing Cy is known! Same for CSE.

~ 20 years to prove that Co(C5) = 2 log 5! Still unknown for
larger odd cycles.

Proof of separation will involve: Lower bounds on C§ and
upper bounds on ().

11
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¥(@G) solution to SDP determined by G. Easy to compute.
Co(G) < 10g¥(G). (9(Cs) = V/5).

(Beigi 1002.2488; Duan, Severini, Winter 1002.2514)
C¥(G) <logd(@), also!

» Can't use Lovasz to prove separation.

vV v v Y

Theorem (ORCP Part 1)

If G has orthonormal representation in C* and partitions into m
d-cliques then CE(G) > logm.
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» Lovész 1979: Co(C5) = £ log5.

» J(G) solution to SDP determined by G. Easy to compute.

> Co(G) < log 9(G). (9(Cs) = V).

» (Beigi 1002.2488; Duan, Severini, Winter 1002.2514)
C¥(G) <logd(@), also!

» Can't use Lovasz to prove separation.

Theorem (ORCP Full: CLMW 1003.3195)

If G has orthonormal representation in C* and partitions into m
d-cliques then CE(G) = logm.
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Upper bounds on Cj: Lovasz bound

> Lovasz 1979: Cy(Cs) = 5 log5b.

» (@) solution to SDP determined by G. Easy to compute.

> Co(G) < log 9(G). (H(C5) = V).

> (Beigi 1002.2488; Duan, Severini, Winter 1002.2514)
C¥(G) <logd(@), also!

» Can't use Lovasz to prove separation.

Theorem (ORCP Full: CLMW 1003.3195)

If G has orthonormal representation in C* and partitions into m
d-cliques then CE(G) = logm.

CE(F) =log6. Nice, but only know log5 < Cy(F) < log6

12



Upper bounds on Cj: Haemers bound

Matrix A (with rows and cols indexed by vertices) fits G if:
Aze =1, Ay = 0 when z and 2’ not adjacent. E.g. for the
pentagon:
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Upper bounds on Cj: Haemers bound

Matrix A (with rows and cols indexed by vertices) fits G if:
Aze =1, Ay = 0 when z and 2’ not adjacent. E.g. for the
pentagon

* O O % ¥
O ¥ = ¥ O
*¥ = ¥ O O
= %X O O *

*
1
*
0
0
k

>IfAf|tsGoz ) <rank A
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Upper bounds on Cj: Haemers bound

Matrix A (with rows and cols indexed by vertices) fits G if:
Aze =1, Ay = 0 when z and 2’ not adjacent. E.g. for the
pentagon:

11000

90 11000
Q 001 1 0
001 1 0

ee 00001

> If Afits G: a(G) <rank A
> A®" fits G so a(G™) < (rank A®™) = (rank A)™.
> If A fits G: Cp(G) < logrank A

» Generally hard to minimize rank over fitting matrices, and
often worse bound than Lovasz.
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Upper bounds on Cj: Haemers bound

Matrix A (with rows and cols indexed by vertices) fits G if:
Aze =1, Ay = 0 when z and 2’ not adjacent. E.g. for the

pentagon
11000
11000
Q 001 1 0
001 10
00001

> IfAfltsG a(G) <rank A
> A®" fits G" so @(G”) (rank A®™) = (rank A)".
> If A fits G: Cp(G) < logrank A

» Generally hard to minimize rank over fitting matrices, and
often worse bound than Lovasz.

> ldea: Look for graphs where Haemers bound < Lovész bound
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» Co(I'j) =log(2j + 1) by application of Haemers bound over
GF(2) (Peeters 1996).
In fact Mo(I'j) = 2j + 1: Cy(I';) achieved by n =1 code.

> O(T';) = 27 + 1. (Beigi; DSW) CE(T;) < log(2 + 1).
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Pauli graphs I';
Definition
Vertices: {I,0x,0y,07}%7\ {I®7}
Edges: u # v are adjacent iff uv = vu

Promising properties. . .

» Co(I'j) =log(2j + 1) by application of Haemers bound over
GF(2) (Peeters 1996).
In fact Mo(I'j) = 2j + 1: Cy(I';) achieved by n =1 code.

> O(0;) =2/ + 1. (Beigi; DSW) CF(T;) < log(2/ +1).
Doesn't rule out entanglement advantage for j > 3.

» The 47 — 1 vertices of I'; can be partitioned into 2/ +1
cliques each of size 29 — 1.

If orthonormal rep. of I'; exists with dimension 2/ — 1 then
CE(T'j) =1log(2? + 1) by Theorem ORCP. Can we find one for
j > 37

14
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Root systems

We found one in an interesting place. . .

Simple root systems: Finite set of vectors with certain special
properties. 4 infinite families: A,,, By, Cy,, D,,.

5 exceptional cases: Go, Fy, Eg, E7, Eg.

A

4
V\ o—
Gy % AG,) e—e

\'%

Orthogonality graph of d dimensional root system has d
dimensional orthonormal representation.
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Recall that I'3 partitions into 23 + 1 = 9 cliques of size 23 — 1 = 7.
Remarkably,

Fg = A(E7)I

Therefore, it has an orthonormal representation of dimension 7....
So, by Theorem ORCP

CE(T3) = log9.
while, by Peeters result
Co(T'3) =log?7.
For the orthogonality graphs of other root systems, we have found:

> ATLyB’rHC’nvD’ruGQ: CDE :CO
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Entanglement can increase zero-error capacity

Recall that I'3 partitions into 23 + 1 = 9 cliques of size 23 — 1 = 7.

Remarkably,
Ty = A(E;)!

Therefore, it has an orthonormal representation of dimension 7....

So, by Theorem ORCP
while, by Peeters result

For the orthogonality graphs of other root systems, we have found:

> ATL7 Bn: Cnv D’ru GQ: CDE = CO
> Eg: CE(A(Eg)) = log 15 whereas Cp(A(Eg)) < 9.
» [y, Eg: Don't know if there is a separation.
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The channel &,.

Pmin(M7 g?n)

log M bits

lim Ppin >0

n—~o0

lim Ppin =0
n— oo

n channel uses

Channel &,: Input symbols: Vertices of I's.
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The channel &,.

Pin(M, EE™)

lim Py, >0
G@g
log M bits nll_{l(f)lo Poin=0

n channel uses

Channel &,: Input symbols: Vertices of I's.  The output is a
7-clique in I's. There are 135 of these and each input symbol is
contained in 15 of them.  Output is selected uniformly at random
from these 15. G(&,) =T's.
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The channel &,.

Pmin(Ma g;gm)

lim P >0 BSS
G@*\
log M bitS nlggo Pmin =0

n channel uses

Capacity C(&,) = log9.
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The channel &,.

Pmin(Ma g§n)

A Frnin >0 o

3 G@*\ Prin >0
log M bits i 71113;0 Prin =0

i CO(EQ = 8

Pain = 0

n=1 n channel uses

Capacity C(&,) = log9.
G(&,) =T's. Zero-error capacity Cp(Ex) = log 7.
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The channel &,.

Pnﬁfm(M7g§n) I
lim PE, >0 BSS
: D
log M bits 1 O%Ka* 2o = T
i -2 0eT
e ColEx
,’/”(‘j//’

Capacity C(&,) = log9.
G(&,) =T's. Zero-error capacity Cp(Ex) = log 7.
Entanglement-assisted zero-error capacity C(’)E(E*) = log 9!
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Conclusion and open questions

Entanglement assistance can increase the n — oo rate of zero-error
communication over some classical channels.

Striking qualitative changes to asymptotic error dependence at
rates < C'.
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Conclusion and open questions

Entanglement assistance can increase the n — oo rate of zero-error
communication over some classical channels.

Striking qualitative changes to asymptotic error dependence at
rates < C'.

» Computing MF? CF?
» Graphs with separation between C¥(G) and log9(G)?

» Beyond zero-error: Effect of entanglement on error probability
vs. n at rates below capacity?

» Relationship to non-contextuality.
Thanks!
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