
Entanglement can increase asymptotic rates of zero-error classical communication
over classical channels

Debbie Leung, Laura Mancinska, William Matthews, Maris Ozols, Aidan Roy
Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada

It is known that the number of different classical messages which can be communicated with a
single use of a classical channel with zero probability of decoding error can sometimes be increased by
using entanglement shared between sender and receiver. It has been an open question to determine
whether entanglement can ever offer an advantage in terms of the zero-error communication rates
achievable in the limit of many channel uses. In this paper we show, by explicit examples, that
entanglement can indeed increase asymptotic zero-error capacity. Interestingly, in our examples the
quantum protocols are based on the root systems of the exceptional Lie groups E7 and E8.

Motivation and statement of the problem

Given a classical noisy channel N , let c0(N ) denote
the maximum number of different messages that can be
transmitted without error by one use of N . Two input
symbols of N are confusable if there is an output sym-
bol which both inputs can cause to occur. The confus-
ability graph of N is the graph G(N ) whose vertices
are the input symbols and edges connect confusable sym-
bols. Note that c0(N ) equals the independence number1
of G(N ).

The bit rate of zero-error communication which can be
achieved in the large block length limit is the zero-error
capacity [1, 2] of N ,

C0(N ) := lim
n→∞

1
n

log2 c0(N⊗n).

While determining whether c0(N ) is larger than some
constant is NP-complete,2 there is no known algorithm
to compute C0(N ) in general.

The usefulness of entanglement between sender and re-
ceiver has been studied for a variety of communication
tasks with striking results. In teleportation it allows for
transmission of quantum data over classical channels. In
superdense coding it can increase the rate of classical
communication over quantum channels. However, the
rate at which classical data can be sent over a classical
channel with arbitrarily small, but non-zero, error prob-
ability (the Shannon capacity [3]) cannot be increased by
entanglement assistance [5].

In light of these results and recent work generalising
zero-error information theory to quantum data and chan-
nels [6–9] we wanted to determine whether entanglement
could increase the rate of zero-error communication of
classical information over classical channels. Defining
cE0 (N ) as the maximum number of different messages
that can be sent without error with one use of N and
arbitrary entanglement assistance, the entanglement-

1 The maximum size of a set of pairwise non-adjacent vertices.
2 Since c0(N ) is equal to the independence number of G(N ), this

problem is equivalent to MAX CLIQUE.

assisted zero-error capacity CE
0 (N ) is defined in a

similar way to C0(N ) above.
Partial progress on this problem was made last year. It

was proved that cE0 (N ), like c0(N ), is determined by the
confusability graph G(N ). Therefore, we can talk about
the values of cE0 and CE

0 for a graph [11, 12]. Furthermore
graphs G were constructed for which cE0 (G) = c0(G)+1,
thus showing that the one-shot capacity can be increased
by entanglement assistance. This result was based on
proofs of the Kochen-Specker theorem and has a formal
connection to the existence of certain pseudo-telepathy
games.

However, our original question whether there are chan-
nels whose asymptotic rates of zero-error communication
are improved by entanglement remained unresolved. A
major obstacle was that there is no known algorithm to
compute C0(N ) and that the growth of 1

n log2 c0(N⊗n)
with n can be extremely complex [4]. A celebrated up-
per bound on C0(N ) due to Lovász [15] was shown to
also apply for CE

0 (N ) [10, 16]. This interesting result
unfortunately shows that Lovász’s bound is useless for
the purposes of settling our question. In addition we do
not know a simple way to compute even the one-shot
entanglement assisted quantity cE0 .

Fortunately, other approaches proved fruitful, and here
we answer our initial question by finding explicit graphs
for which CE

0 > C0 (and so the difference between
cE0 (N⊗n) and c0(N⊗n) is exponential in n, in contrast
to the small constant gap shown in [11]). We summarize
our results and methods here (see [20] for details).

Theorem 1 There are channels for which entanglement-
assistance increases the asymptotic rate of zero-error
communication. In particular, there exists N with
C0(N ) = log 7 and CE

0 (N ) = log 9.

Our methods and contributions

For a classical channel N with input alphabet X and
output alphabet Y , an entanglement-assisted zero-
error code of size k and block length n has this form
[12]: Alice and Bob share an entangled state ρAB ; To
encode message q, Alice makes the q-th of k generalized
measurements, each with outcome set Xn, which deter-
mines the n symbols she inputs toN ; The channel output
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(2) Alice makes the input labelled (q, j).

ALICE

BOB (1) To send message q ∈ [k] Alice
measures in the orthogonal ba-
sis {|ψ(q, i)� : i ∈ [d]} obtaining
the outcome j. Conditioned on
knowledge of (q, j), Bob’s state is
|ψ(q, j)�∗ (the complex conjugate
of |ψ(q, j)�).

(3) The output y tells Bob that the
input was in the mutually confusable set
Sy := {(c, i) : Pr(y|input = (c, i)) > 0}.
Therefore, he knows his system is in
one of the set of orthogonal states
{|ψ(c, i)�∗ : (c, i) ∈ Sy} and he can mea-
sure in a basis including these states to
determine (q, j) with certainty.

Suppose G(N ) partitions into k cliques of size d. Label the vertices (input symbols) by pairs (c, i) where c ∈ [k] identifies
the clique and i ∈ [d] the vertex within the clique. Further suppose that G(N ) has an orthogonal representation mapping
(c, i) to |ψ(c, i)� i.e. �ψ(c, i)|ψ(c�, i�)� = 0 if (c, i) and (c�, i�) are confusable. To send one of k messages with zero-error:

j

FIG. 1: If the confusability graph of N can partitioned into k cliques of size d then C0(N ) ≤ k by the Lovász bound. If it also
has a d-dimensional orthogonal representation then this rate can be achieved by the entanglement-assisted zero-error code (of
block length one) described in this figure.

y ∈ Y n, determines the generalized measurement (with
k outcomes) which Bob makes on his subsystem. When
Alice makes measurement q, Bob should obtain outcome
q with certainty.

To prove the existence of an asymptotic separation, we
aimed to identify a graph G for which it was possible to
simultaneously prove an upper bound u on C0(G), and to
prove the existence of an entanglement assisted zero-error
code showing that CE

0 (G) > u.
A particularly promising family are the symplectic

graphs sp(m), whose vertices are the 22m−1 non-identity
Pauli matrices on m qubits and edges connect commut-
ing ones. Peeters [17] has used Haemers bound [18] to
show that C0(sp(m)) = log(2m+ 1) while the logarithm
of the Lovász number of sp(m) is log(2m + 1). Hence,
the Lovász bound does not rule out a separation when
m ≥ 3.

It remains to find good entanglement-assisted zero-
error codes for these graphs. It is known [12] that if the
vertices of G can be partitioned into k cliques each of size
d, and it is possible to find an orthogonal d-dimensional
representation3 then CE

0 (G) = log k. The entanglement-
assisted protocol achieving this is described in Figure 1.
Moreover, the capacity is achieved in a single use of the
channel, consuming log d ebits, and it saturates Lovász’s
bound.

3 An assignment of a non-zero vector in Cd to each vertex of G
such that adjacent vertices have orthogonal vectors.

The maximum clique size of sp(m) is 2m−1 and the
vertices can be shown to partition into 2m+1 such cliques.
Thus, CE

0 (sp(m)) = 2m+1 if an (2m−1)-dimensional or-
thogonal representation can indeed be found.

We found an orthogonal representation for sp(3) (see
Appendix) thus establishing Theorem 1. It turns out that
these seven-dimensional vectors form the root system E7.
Underlying this beautiful construction is an isomorphism
between the automorphism group of sp(3) and the quo-
tient of the Weyl group of E7 by reflections about the
origin. A similar result can be obtained for a subgraph
of sp(4) for which E8 provides an orthogonal representa-
tion, and CE

0 = log 15 (whereas C0 ≤ log 9).
Our result has an interesting interpretation in terms of

Kochen-Specker (KS) proofs of non-contextuality. Such
a proof specifies a set of complete, projective measure-
ments, with some projectors in common, such that there
is no way to consistently assign a truth value to each
projector. An assignment is consistent if (a) precisely
one projector in each measurement is “true” and (b) no
two “true” projectors are orthogonal.

Ruuge [14] shows that the root systems E7 and E8 can
be used to construct KS proofs using computer search to
nullify the possibility of a consistent assignment. This is
a corollary of our results, but our proof is analytic due to
the novel application of the Haemers bound. In fact, the
use of the Haemers bound provides a whole sequence of
KS proofs which are increasingly strong in the following
quantitative sense: For the set of 9n measurements which
are obtained by tensoring together n of Alice’s 9 measure-
ments, only 7n can be assigned values in accordance with
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property (a) before property (b) must be violated.
Three main avenues for further research are apparent

to us. First, is it possible to give a general algorithm to
compute CE

0 ? An interesting sub-problem is to determine
whether CE

0 /C0 can be arbitrarily large. Second, we have
already shown that there are some connections to multi-
prover games and to non-contextuality, but we feel that
a deeper understanding of these connections is possible
and desirable. For example, the application of our result

to KS proofs mentioned above suggests some stronger
notion of non-contextuality in quantum mechanics. Fi-
nally, our work on entanglement-assisted zero-error codes
can be placed in the wider context of using entanglement
to reduce decoding error in finite block length coding of
classical information for classical channels (demonstrat-
ing this effect is even experimentally feasible [19]), and
characterising this phenomenon presents an even wider
set of questions.
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Appendix A: The orthogonal representation of sp(3)

The orthogonal representation for sp(3) grouped into
Alice’s 9 measurement bases. The normalization of the
vectors are omitted, and “−” stands for −1.

0BBBBBBB@

ZII 1 0 0 0 0 0 0
IZI 0 1 0 0 0 0 0
IIZ 0 0 1 0 0 0 0
ZZI 0 0 0 1 0 0 0
ZIZ 0 0 0 0 1 0 0
IZZ 0 0 0 0 0 1 0
ZZZ 0 0 0 0 0 0 1

1CCCCCCCA
0BBBBBBB@

XII 1 0 0 1 1 0 −
IXI 0 − 0 1 0 1 1
IIX 0 0 1 0 1 − 1
XXI − 1 0 0 1 1 0
XIX 1 0 1 − 0 1 0
IXX 0 1 1 1 − 0 0
XXX 1 1 − 0 0 0 1

1CCCCCCCA

0BBBBBBB@

Y II 1 0 0 − − 0 1
IXZ 0 1 0 1 0 − 1
IZX 0 0 − 0 1 1 1
Y XZ − 1 0 0 − 1 0
Y ZX 1 0 1 1 0 1 0
IY Y 0 1 1 − 1 0 0
Y Y Y 1 1 − 0 0 0 −

1CCCCCCCA
0BBBBBBB@

XZI 1 0 0 1 − 0 1
ZXZ 0 1 0 1 0 1 −
IZY 0 0 1 0 1 1 1
Y Y Z 1 1 0 0 1 − 0
XIY − 0 1 1 0 − 0
IY X 0 1 1 − − 0 0
Y XX 1 − 1 0 0 0 −

1CCCCCCCA

0BBBBBBB@

XIZ 1 0 0 − 1 0 1
IY I 0 1 0 1 0 1 1
ZIY 0 0 1 0 − − 1
XY Z 1 − 0 0 − 1 0
Y IX − 0 1 − 0 1 0
ZY Y 0 − 1 1 1 0 0
Y Y X 1 1 1 0 0 0 −

1CCCCCCCA
0BBBBBBB@

Y ZI − 0 0 1 − 0 1
ZXI 0 1 0 − 0 1 1
IIY 0 0 1 0 − 1 −
XY I 1 1 0 0 − − 0
Y ZY 1 0 − 1 0 1 0
ZXY 0 1 1 1 1 0 0
XY Y 1 − 1 0 0 0 1

1CCCCCCCA

0BBBBBBB@

Y IZ 1 0 0 1 − 0 −
IY Z 0 1 0 − 0 1 −
ZZY 0 0 − 0 − 1 1
Y Y I 1 − 0 0 1 1 0
XZX − 0 1 1 0 1 0
ZXX 0 1 − 1 1 0 0
XXY 1 1 1 0 0 0 1

1CCCCCCCA
0BBBBBBB@

XZZ − 0 0 1 1 0 1
ZY Z 0 − 0 1 0 1 −
ZZX 0 0 1 0 − 1 1
Y XI 1 1 0 0 1 1 0
Y IY 1 0 1 1 0 − 0
IXY 0 1 − 1 − 0 0
XY X − 1 1 0 0 0 −

1CCCCCCCA

0BBBBBBB@

Y ZZ 1 0 0 1 1 0 1
ZY I 0 1 0 1 0 − −
ZIX 0 0 1 0 1 1 −
XXZ 1 1 0 0 − 1 0
XZY 1 0 1 − 0 − 0
IY I 0 − 1 1 − 0 0

Y XY − 1 1 0 0 0 1

1CCCCCCCA


