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Considering that common public-key cryptosystems such as RSA and El Gamal are insecure against
quantum attacks, the susceptibility of other well-studied public-key systems to such attacks is naturally of
fundamental interest. In this article we present evidence for the strength of the McEliece cryptosystem against
quantum attacks, demonstrating that the quantum Fourier sampling attacks that cripple RSA and El Gamal do
not apply to the McEliece system coupled with well-permuted, well-scrambled linear codes. While our results
do not rule out other quantum (or classical) attacks, they do demonstrate security against the hidden subgroup
methods that have proven so powerful for computational number theory. Additionally, we partially extend
results of Kempe et al. [7] concerning the subgroups of S, reconstructible by quantum Fourier sampling.

The McEliece cryptosystem. This public-key cryptosystem was proposed by McEliece in 1978 [9], and
is typically built over Goppa codes. There are two basic types of attacks known against the McEliece
cryptosystem: ciphertext only attacks, and attacks on the private key. The former is unlikely to work because
it relies on solving the general decoding problem, which is NP-hard. The latter can be successful on certain
classes of linear codes, and is our focus. In the McEliece cryptosystem, the private key of a user Alice consists
of three matrices: a k X n generator matrix M of a hidden g-ary [n, k]-linear code, an invertible k x k matrix
A over the finite field IF;, and an n x n permutation matrix P. Both matrices A and P are selected randomly.
Alice’s public key includes the matrix M* = AM P, which is a generator matrix of a linear code equivalent to
the secret code. An adversary may attack the private key by first computing the secret generator matrix M,
and then computing' the secret row “scrambler” A and the secret permutation P.

There have been some successful attacks on McEliece-type public-key systems. A notable one is
Sidelnokov and Shestakov’s attack [14], which efficiently computes the matrices A and MP from the public
matrix AMP, in the case that the secret code is a generalized Reed-Solomon (GRS) code. Note that this attack
does not reveal the secret permutation. An attack in which the secret permutation is revealed was proposed by
Loidreau and Sendrier [8]. However, this attack only works with a very limited subclass of classical binary
Goppa codes, namely those with a binary generator polynomial.

Although the McEliece cryptosystem is efficient and still considered (classically) secure [3], it is rarely
used in practice because of the comparatively large public key (see remark 8.33 in [10]). The discovery
of successful quantum attacks on RSA and El Gamal, however, have changed the landscape: as suggested
by Ryan [12] and Bernstein et al. [1], the McEliece cryptosystem could become a “post-quantum” alternative
to RSA.

IRecovering the secret scrambler and the secret permutation is different from the Code Equivalence problem. The former finds a
transformation between two equivalent codes, while the latter decides whether two linear codes are equivalent.



Quantum Fourier sampling. Quantum Fourier Sampling (QFS) is a key ingredient in most efficient
algebraic quantum algorithms, including Shor’s algorithms for factorization and discrete logarithm [13] and
Simon’s algorithm [15]. In particular, Shor’s algorithm relies on quantum Fourier sampling over the cyclic
group Zjy, while Simon’s algorithm uses quantum Fourier sampling over Z5. In general, these algorithms
solve instances of the Hidden Subgroup Problem (HSP) over a finite group G. Given a function f on G whose
level sets are left cosets of some unknown subgroup H < G, i.e., such that f is constant on each left coset of
H and distinct on different left cosets, they find a set of generators for the subgroup H.

The standard approach to this problem treats f as a black box and applies f to a uniform superposition
over G, producing the coset state |cH) = (1/\/|H]) Ly |ch) for a random ¢. We then measure |cH) in a
Fourier basis {|p, i, j)} for the space C[G], where p is an irrep? of G and i, j are row and column indices of a
matrix p(g). In the weak form of Fourier sampling, only the representation name p is measured, while in the
strong form, both the representation name and the matrix indices are measured. This produces probability
distributions from which classical information can be extracted to recover the subgroup H. Moreover,
since |cH) is block-diagonal in the Fourier basis, the optimal measurement of the coset state can always be
described in terms of strong Fourier sampling.

Understanding the power of Fourier sampling in nonabelian contexts has been an ongoing project, and
a sequence of negative results [4, 11, 5] have suggested that the approach is inherently limited when the
underlying groups are rich enough. In particular, Moore, Russell, and Schulman [11] showed that over the
symmetric group, even the strong form of Fourier sampling cannot efficiently distinguish the conjugates
of most order-2 subgroups from each other or from the trivial subgroup. That is, for any ¢ € S,, with large
support, and most 7T € S,,, if H = {1,7~ o7} then strong Fourier sampling, and therefore any measurement
we can perform on the coset state, yields a distribution which is exponentially close to the distribution
corresponding to H = {1}. This result implies that the GRAPH ISOMORPHISM cannot be solved by the naive
reduction to strong Fourier sampling. Hallgren et al. [5] strengthened these results, demonstrating that even
entangled measurements on o(logn!) coset states result in essentially information-free outcome distributions.
Kempe and Shalev [6] showed that weak Fourier sampling single coset states in S,, cannot distinguish the
trivial subgroup from larger subgroups H with polynomial size and non-constant minimal degree.> They
conjectured, conversely, that if a subgroup H < S,, can be distinguished from the trivial subgroup by weak
Fourier sampling, then the minimal degree of H must be constant. Their conjecture was later proved by
Kempe, Pyber, and Shalev [7].

Our contributions. To state our results, we say that a subgroup H < G is indistinguishable by strong
Fourier sampling if the conjugate subgroups g~!Hg cannot be distinguished from each other or from the
trivial subgroup by measuring the coset state in an arbitrary Fourier basis. Since the optimal measurement of
a coset state can always be expressed as an instance of strong Fourier sampling, these results imply that no
measurement of a single coset state yields any useful information about H. Based on the strategy of Moore,
Russell, and Schulman [11], we first develop a general framework to determine indistinguishability of a
subgroup by strong Fourier sampling. We emphasize that their results cover the case where the subgroup has
order two. Our principal contribution is to show how to extend their methods to more general subgroups.
We then apply this general framework to a class of semi-direct products (GLi(IF,) x S,,) ¢ Z>, bounding
the distinguishability for the HSP corresponding to the private-key attack on the McEliece cryptosystem, i.e.,
the problem of determining A and P from M* and M. Our bound depends on the minimal degree and the size
of the automorphism group of the secret code, as well as on the column rank of the secret generator matrix. In

2Throughout the paper, we write “irrep” as short for “irreducible representation”.
3The minimal degree of a permutation group H is the minimal number of points moved by a non-identity element of H.



particular, the rational Goppa codes have good values for these quantities, i.e., they have small automorphism
groups with large minimal degree, and have generator matrices of full rank. In general, our result indicates
that the McEliece cryptosystem resists all known attacks based on strong Fourier sampling if its secret g-ary
[n,k]-code (i) is well-permuted, i.e., its automorphism group has minimal degree Q(n) and size e*™ and
(ii) is well-scrambled, i.e., it has a generator matrix of rank at least k — o(y/n). Here, we assume qk2 < n02n,
which implies log |GLi(FF,)| = O(nlogn), so that Alice only needs to flip O(nlogn) bits to pick a random
matrix A from GLi(F,). Thus she needs only O(nlogn) coin flips overall to generate her private key.

While our main application is the security of the McEliece cryptosystem, we show in addition that our
general framework is applicable to other classes of groups with simpler structure, including the symmetric
group and the finite general linear group GL,(FF,). For the symmetric group, we extend the results of
[11] to larger subgroups of S,. Specifically, we show that any subgroup H < S, with minimal degree
m > O(log|H|) + w(logn) is indistinguishable by strong Fourier sampling over S,,. In other words, if the
conjugates of H can be distinguished from each other—or from the trivial subgroup—by strong Fourier
sampling, then the minimum degree of H must be O(log|H|) + O(logn). This partially extends the results of
Kempe et al. [7], which apply only to weak Fourier sampling.

We go on to demonstrate another application of our general framework for the general linear group
GL(FF,), giving the first negative result regarding the power of strong Fourier sampling over GL,(F,). We
show that any subgroup H < GL,(FF,) that does not contain non-identity scalar matrices and has order
|H| < g® for some § < 1 /2 is indistinguishable by strong Fourier sampling. Examples of such subgroups are
those generated by a constant number of triangular unipotent matrices.

Summary of technical ideas. Let G be a finite group. We wish to establish general criteria for indistin-
guishability of subgroups H < G by strong Fourier sampling. We begin with the general strategy, developed
in [11], that controls the resulting probability distributions in terms of the representation-theoretic properties
of G. In order to handle richer subgroups, however, we have to overcome some technical difficulties. Our
principal contribution here is a “decoupling” lemma that allows us to handle the cross terms arising from
pairs of nontrivial group elements.

Roughly, the approach identifies two disjoint subsets, SMALL and LARGE, of irreps of G. The set LARGE
consists of all irreps whose dimensions are no smaller than a certain threshold D. While D should be as
large as possible, we also need to choose D small enough so that the set LARGE is large. In contrast, the
representations in SMALL must have small dimension (much smaller than /D), and the set SMALL should be
small or contain few irreps that appear in the decomposition of the tensor product representation p ® p* for
any p € LARGE. In addition, any irrep p outside SMALL must have small normalized character |, (h)|/d,
for any nontrivial element 2 € H. If there are such two sets SMALL and LARGE, and if the order of H is
sufficiently small, then H is indistinguishable by strong Fourier sampling over G.

In the case G = S,,, we choose SMALL as the set A, of all Young diagrams with at least (1 — c)n rows or
at least (1 —c)n columns, and set D = n", for reasonable constants 0 < ¢,d < 1. For this case, we use the
same techniques as in [11].

For the case G = (GLi(F,) x S,) 1 Z, corresponding to the McEliece cryptosystem, the normalized
characters on the hidden subgroup K depend on the minimal degree of the automorphism group Aut(C),
where C is the secret code. Moreover, |K| depends on |Aut(C)| and the column rank of the secret generator
matrix. Now we can choose SMALL as the set of all irreps constructed from tensor product representations
T x A of GLi(F,) x S, with A € A.. Then the “small” features of A, will induce the “small” features of this
set SMALL. To show that any irrep outside SMALL has small normalized characters on K, we show that any
Young diagram A outside A, has large dimension. See [2] for a full technical version.
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