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Abstract

This document is an extended abstract of [Fri10b]. See [JNP+10] for closely related results obtained by
different methods.

Quantum correlations in composite quantum systems. In the study of quantum entanglement and
quantum correlations, one usually assumes that the state space of a composite quantum system is a tensor
product HA ⊗HB , so that the correlations take on the form

P (a, b |x, y) = 〈ψ, (Aa
x ⊗Bb

y)ψ〉. (1)

with POVM observables Ax
a and By

b . However, how is this justified from physical principles? Can we really be
sure that this tensor product assumption is appropriate?

One possible alternative assumption might be to say that a composite system is defined in terms of a joint
Hilbert space H together with, for each site, a set of local observables on H, such that each observable located
on the first site commutes with each observable located on the second site; in physical terms, this means that
the observables located at different sites are compatible, and can in particular be measured jointly. This is
the “commutativity assumption”. In the case of finite-dimensional case, this is effectively equivalent to the
tensor product assumption [SW08]; however, for infinite-dimensional systems, this fails. So it should always be
kept in mind all conjectural statements we make about quantum correlations are only relevant in the case of
infinite-dimensional systems.

There is one fundamental reason to consider the commutativity assumption as an alternative to the tensor
product assumption. It is our point of view that the operation of forming a composite system from its subsystems
should not be a fundamental structure in a physical theory. The point is that nature presents us with a huge
quantum system which we observe and conduct experiments with, and in some ways this total system behaves as
if it were composed of smaller parts. Hence it seems that the correct question would be “When does a physical
system behave like it were composed of smaller parts?” rather than “How do physical systems compose to
composite systems?”. Note that this is in stark contrast to many other approaches to the foundations of quantum
theory, in which the operation of forming a composite system from subsystems is a fundamental structure: e.g.
categorical quantum mechanics [Coe10] or certain approaches of reconstructing quantum mechanics from axioms
on the probabilistic structure of the theory [Har01], [MM10]. From our point of view, the tensor product operation
should not be a fundamental structure of quantum theory, and hence we see the need to consider other structures
pertaining to physical systems which potentially make the systems behave like they were composed of subsystems.

Given this motivation, we study what happens to the set of quantum correlations upon relaxing the tensor
product structure in (1) to the commutativity assumption. Then the correlations take on the form

P (a, b |x, y) = 〈ψ,Aa
xB

b
yψ〉 (2)

for which the commutativity assumption [Ax
a, B

y
b ] = 0 is relevant for ensuring that the imaginary part of this

expectation value vanishes.
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Tsirelson’s problem. The two assumptions 1 and 2 each give rise to a set of quantum correlations as a subset
of all no-signaling conditional probability distributions. Calling these sets Q⊗ and Qc, respectively, we arrive at:

Tsirelson’s problem. Is Q⊗ = Qc or Q⊗ 6= Qc?

Of course, the answer to this question may in principle depend on the specific Bell scenario under consideration.
We therefore consider the hypothesis:

TP conjecture: Q⊗ = Qc holds in all bipartite Bell-test scenarios with fixed finite number of
observables per party and fixed finite number of outcomes per observable.

At present, the TP conjecture is wide open, and nothing is known besides some relatively simple observations.
Firstly, Q⊗ ⊆ Qc holds in all scenarios, since observables acting on separate tensor factors automatically commute,
so that the tensor product assumption implies the commutativity assumption.

What would be the implications of an answer to TP conjecture? Clearly, a positive answer would be a
nice justification for assuming quantum correlations to have the form 1; even if the analogous question in the
multipartite case would still be open. A negative answer in terms of some correlations which are of the form 2 but
not of the form 1 however would probably have a large impact since it would mean that much of the research done
since the inception of quantum information theory until today would actually not be applicable to these quantum
correlations! Also, it would certainly raise many more questions: could these correlations be physically realistic,
despite results like those mentioned in [RS10]? If so, would they also be experimentally accessible? Would they
be more useful for quantum communication and computation than those of the form 1? Furthermore, it would
provide a physically intuitive context in which infinite-dimensional Hilbert spaces of states cannot always be
approximated by finite-dimensional ones.

Note also that many bounds on the set of quantum correlations, for example the Navascués–Pironio–Aćın
hierarchy of semidefinite programs [NPA08], actually bound Qc and not Q⊗.

Kirchberg’s QWEP conjecture. The dichotomy between the tensor product assumption and the commu-
tativity assumption also prevails in the theory of tensor products of C∗-algebras (see e.g. [KR97]). Given C∗-
algebras A and B, we may think of them as observable algebras [Lan09] of some physical system, representing
all possible superselection sectors at once. Then there are (at least) two C∗-algebraic tensor products which are
candidate C∗-algebras for representing the composite physical system,

A⊗min B and A⊗max B , (3)

In the first case, the superselection sectors of the joint system are exactly the tensor products of superselection
sectors of A and B, while in the second case there exist additional superselection sectors in which the alge-
bras commute, but the state space does not split as a tensor product. In general, the two algebras in 3 are
different! Determining whether 3 coincide for a particular pair of C∗-algebras is often a very difficult problem.
Kirchberg [Kir93] (see [Oza04] for a more recent review) has proposed the following as an open problem:

QWEP conjecture: C∗(F2)⊗min C
∗(F2) = C∗(F2)⊗max C

∗(F2).

Here, F2 stands for the free group on two generators, while C∗(F2) is the corresponding maximal group C∗-
algebra [KR97]. The QWEP conjecture is known to be equivalent to many open problems in C∗-algebra theory
related to finite-dimensional approximability, and also to the notorious Connes embedding conjecture for von
Neumann algebras [Cap10]; one of the former reformulations is also responsible for the acronym “QWEP” [Oza04,
p.7 / 3.19].
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Quantum correlations and group C∗-algebras. It is shown in our paper [Fri10b]—and independently
in [JNP+10]—that the following implication holds:

QWEP conjecture =⇒ TP conjecture (4)

Note that it is not known whether the converse implication is also true; we will soon get to saying something
about how to formulate a variant of Tsirelson’s problem equivalent to the QWEP conjecture. Results of this
type are important in that they provide a physical interpretation of the latter. Thereby it becomes possible to
try to attack this purely mathematical problem using physical intuition and physical principles: for example, one
might try to look for a counterexample to TP conjecture in terms of correlations of the form 2 which provably
violate the physical principle of Information Causality [PPK+09]; and by 4, this would then automatically yield
a disproof of the QWEP conjecture.

So how does the correspondence 4 come about? The basic idea is very simple and consists in replacing the
outcome labels of an m-outcome projective observable by the mth roots of unity e

2πij
m , so that the observable

becomes a unitary operator of order m. Likewise, a collection of k projective observables with m outcomes is
equivalent to a collection of k unitaries of order m. The latter data, in turn, is nothing but a representation of
the group C∗-algebra C∗(Zm ∗ . . . ∗ Zm). Now it should be plausible that the conjectures TP and QWEP are
intimately related.

Moreover, we believe that these group C∗-algebras generally provide a useful and relevant framework for the
classification of quantum correlations. For example, it is our impression that the “semidefinite hierarchy” [NPA08]
is secretly based upon [Fri10b, prop. 3.4]. Also, a suitable choice of language is always crucial for gaining deeper
understanding of a problem. So besides presenting and proving our results, we hope to convince the reader that
the language of C∗-algebra tensor products is a suitable framework for Tsirelson’s problem, and for the study
of quantum correlations in general1. For related approaches based on the languages of operator systems and
operator spaces, see [SW08], [JNP+10] and [JPPG+10].

Variants of Tsirelson’s problem. Besides the sets of nonlocal quantum correlations, there are many other
things one can study in order to understand both the power of the quantum-mechanical formalism and its
limitations. We do so by defining two extensions of the concept of quantum correlations, both motivated by our
C∗-algebraic picture, and formulate Tisrelson’s problem for these.

The first extensions of the concept of quantum correlations is the notion of spatiotemporal quantum correla-
tions. Here, it is assumed that the measurements of both parties are projective and do not destroy the system,
so that they can be applied in temporal succession. Since any local measurement necessarily decreases the en-
tanglement contained in the shared bipartite state, it may be surprising that spatiotemporal correlations can
nevertheless be stronger than ordinary spatial ones, as [Fri10b, ex. 4.5] demonstrates. The QWEP conjecture
also implies a positive answer to the spatiotemporal variant of Tsirelson’s problem.

The second extension of the concept of quantum correlations is defined in terms of steering. As originally
formulated by Schrödinger [Sch35], this is the phenomenon that the statse collapse due to Alice’s measurement
changes the state of Bob’s system. Our version of steering considers the case where both Alice and Bob steer
the system of a third party; one can view this as replacing, in the definition of quantum correlations, the
ordinary classical probabilities P (a, b|x, y) by unnormalized density matrices ρ(a, b|x, y). We formulate a version
of Tsirelson’s problem also in this case and prove it to be equivalent to the QWEP conjecture, for each Bell
scenario separately (except CHSH). So in particular, if the steering version of the TP conjecture is correct in
one non-CHSH scenario, it is automatically correct in all other scenarios. Surprisingly, it is actually sufficient to
only consider the marginals ρ(a|x) and ρ(b|y), i.e. no joint measurements have to be considered!

1Compare [Fri10a] for an application of the same ideas to the classification of temporal quantum correlations.
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