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In this work we show the existence of violations of general bipartite Bell inequalities of order√
n

log n
with n inputs, n outputs and n-dimensional Hilbert spaces. Analyzing the construction of the

elements involved in this violation one finds that, even though entanglement is necessary to obtain
violation of Bell inequalities, the entropy of entanglement of the underlying state is essentially
irrelevant in obtaining large violation. We also indicate why the maximally entangled state is
a rather poor candidate in producing large violations with arbitrary coefficients. However, we
also show that for Bell inequalities with positive coefficients (in particular, games) the maximally
entangled state achieves the largest violation up to a logarithmic factor.

INTRODUCTION

Bell inequalities were originally proposed by Bell in
1964 as a way of testing the validity of Einstein- Podolski-
Rosen’s believe that local hidden variable models are a
possible underlying explanation of physical reality [7].
Bell showed that the assumption of a local hidden vari-
able model implies some inequalities on the set of proba-
bilities, since then called Bell inequalities, which are vio-
lated by certain quantum probabilities produced with an
entangled state [2]. For a long time after this, entangle-
ment and violation of Bell inequalities were thought to
be parts of the same concept. This changed in the late
1980s with a number of surprising results ([16], [13], [8])
which showed that, although entanglement is necessary
for the violation of Bell inequalities, the converse is not
true. On the other hand, we must point out that viola-
tion of Bell inequalities is the only way to detect entan-
glement experimentally without additional hypothesis on
the experiment ([1]).

Nowadays, Bell inequalities is a fundamental subject
in Quantum Information Theory (QIT). Apart from the
theoretical interest, Bell inequalities have found appli-
cations in many areas of QIT: quantum cryptography,
complexity theory, communication complexity, estimates
for the dimension of the underlying Hilbert space, entan-
gled games, etc (see [10], [11] and the references therein).
However, despite the recent research on this topic Bell
inequalities and their connection to quantum entangle-
ment have remained quite mysterious. In the few last
years, the application of techniques from different areas
of mathematics has started to clarify the situation. This
includes the consecutive works [12] and [10] which have
shown the operator space theory as a natural framework
for the study of Bell inequalities (see also [11]). Using
this connection the authors proved in [12] the existence
of unbounded violations of tripartite correlation Bell in-
equalities, answering an old question stated by Tsirelson
[15]. Moreover, in [10] the authors used operator spaces
techniques to get unbounded violations of general bipar-
tite Bell inequalities.

BELL INEQUALITIES

A standard scenario to study quantum nonlocality
consists in two spatially separated and non communi-
cating parties, usually called Alice and Bob. Each of
them can choose among different observables, labelled by
x = 1, · · · , N in the case of Alice and y = 1, · · · , N in the
case of Bob. The possible outcomes of this measurements
are labelled by a = 1, · · · ,K in the case of Alice and b =
1, · · · ,K in the case of Bob. For fixed x, y, we will con-
sider the probability distribution (P (a, b|x, y))Ka,b=1. Ac-
tually, the collection P = (P (a, b|x, y))N,Kx,y;a,b=1 ∈ RN

2K2

will be also called probability distribution.
We say that a probability distribution P is LHV (Local

Hidden Variable) if

P (a, b|x, y) =
∫

Ω

Pω(a|x)Qω(b|y)dP(ω)

for every x, y, a, b, where (Ω,Σ,P) is a probability space,
Pω(a|x) ≥ 0 for all a, x, ω,

∑
a Pω(a|x) = 1 for all x, ω

and the analogous conditions for Qω(b|y). We denote the
set of LHV probability distributions by L. We say that
P is Quantum if there exist two Hilbert spaces H1, H2

such that

P (a, b|x, y) = tr(Eax ⊗ F byρ)

for every x, y, a, b, where ρ ∈ B(H1 ⊗ H2) is a density
operator and (Eax)x,a ⊂ B(H1), (F by )y,b ⊂ B(H2) are two
sets of operators representing POVM measurements on
Alice and Bob systems. We denote the set of quantum
probability distributions by Q. It is well known (see [15])
that L  Q ⊂ R = RN2K2

.
Since L is a polytope it can be characterized by a finite

set of linear inequalities (the so called Bell inequalities).
In general we assign a Bell inequality to every linear func-
tional M in (the dual of) R:

For every P ∈ L, |
N,K∑

x,y;a,b=1

Ma,b
x,yp(a, b|x, y)| ≤ C.

We can shorten the above notation by writing |〈M,P 〉| ≤
C and we will simply refer to the functional M as a
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Bell inequality, assuming that C is defined by C =
supP∈L |〈M,P 〉|.

Since L  Q, Quantum Mechanics allows for a viola-
tion of at least some of these inequalities. We define the
violation of a Bell inequality M by a distribution Q as

|〈M,Q〉|
supP∈L |〈M,P 〉|

.

In order to measure the largest quantum violation, we are
interested in the numbers:

ν(Q) = sup
M

|〈M,Q〉|
supP∈L |〈M,P 〉|

(1)

and

sup
Q∈Q

ν(Q). (2)

Beyond the theoretical interest of (1) and (2) as a
measure of nonlocality, these terms turn out to be a
very useful measure regarding the applications in differ-
ent contexts. Indeed, in [11] (see also [10], [6]) the au-
thors showed their immediate application to dimension
witness, communication complexity or entangled games.
Moreover, via a reformulation of ν(Q), this term can be
shown to be very useful to measure nonlocality in the
presence of noise or/and detector inefficiencies (see [10],
Section 5). This is the key point in the search of a loop-
hole free Bell test.

The following theorem allows us to translate the phys-
ical problem to the language of operator spaces.

Theorem 1 ([10], [9]). If we are dealing with N inputs
and K outputs we have

sup
Q∈Q

ν(Q)

' ‖id⊗ id : `N1 (`K∞)⊗ε `N1 (`K∞)→ `N1 (`K∞)⊗min `N1 (`K∞)‖.

Here ' denotes equality up to a universal constant and
ε and min are the smallest tensor norms in the Banach
space category and operator space category respectively.

UNBOUNDED VIOLATION AND QUANTUM
ENTANGLEMENT

The main result of the presented work can be stated
as follows:

Theorem 2 (Theorem 1.2, [9]). For every n ∈ N there
exit a Bell inequality M = (Ma,b

x,y)nx,y,a,b=1 and some
POVMs {Eax}nx,a=1 such that for any diagonal pure state
|ψ〉 =

∑n
i=1 αi|ii〉 ([17]), we have

ν(Q|ψ〉) ≥
|〈M,Q|ψ〉〉|

supP∈L |〈M,P 〉|
� 1

log n
α1(

n∑
i=2

αi),

where Q|ψ〉(a, b|x, y) = 〈ψ|Eax ⊗ Eby|ψ〉 for every
x, y, a, b = 1, · · · , n.
Here, we use � to denote inequality up to a universal
constant independent of n ∈ N.

As an immediate consequence we obtain

Corollary 3. For every n ∈ N there exists a quantum
probability distribution Q with n inputs, n outputs and
Hilbert spaces of dimension n such that

ν(Q) �
√
n

log n
.

Corollary 3 means an improvement of all previous
results about unbounded violation of Bell inequalities.
Specifically, the most important improvement lies in the
use of a polynomial number of inputs to obtain such a
violation (compare to the most recent results [10] and [5]
where an exponential number of inputs where required
in order to obtain similar unbounded violations). This
point is specially relevant regarding the possible applica-
tions of Theorem 2. Furthermore, we showed

Theorem 4 (Theorem 6.8, [9]).

ν(Q) � min{N,K, d}

for every quantum probability distribution Q constructed
with N inputs, K outputs and Hilbert spaces of dimension
d.

Thus, Theorem 2 almost closes the gap with the upper
bounds in all the parameters of the problem (N,K, d).

However, the main point of Theorem 2 is that it pro-
vides a lower bound for the violation of Bell inequalities
that a given bipartite pure state may attain as a function
of its eigenvalues. This allowed us to study the connec-
tion between two concepts at the heart of QIT: violation
of Bell inequalities and quantum entanglement. In partic-
ular, if we denote by E(|ψ〉) the entropy of entanglement
of the pure state |ψ〉, we obtained:

Corollary 5 (Corollary 1.3, [9]). For any δ > 0 we can
find a quantum pure state |ψδ〉 in a high enough dimen-
sion n with entanglement verifying: log n − E(|ψδ〉) < δ
(resp. E(|ψδ〉) < δ) and such that

ν(Q|ψδ〉) ≥
|〈M,Q|ψδ〉〉|

supP∈L |〈M,P 〉|
�

√
n

(log n)2
.

Corollary 5 tells us that even though quantum entan-
glement is needed to obtain violation of Bell inequalities,
the amount of entanglement is essentially irrelevant for
large violation. Indeed, we can find states with entropy
of entanglement close to either 0 or log n and this only
decreases violation by a logarithmic factor.
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THE ROLE OF THE MAXIMALLY ENTANGLED
STATE

It is interesting to note that the construction in The-
orem 2 doesn’t say anything about the extremal cases:
entanglement 0 (which is trivial) and maximal entangle-
ment. This led us to the following result:

Theorem 6 (Theorem 1.4, [9]). There exists a Bell in-
equalities M with 2n

2
inputs and n outputs with the fol-

lowing properties:

a) There exists a quantum probability distribution Q
constructed with Hilbert spaces of dimension n such
that

|〈M,Q〉|
supP∈L |〈M,P 〉|

�
√
n

log n
.

b) sup{|〈M,Qmax〉|} ≤ 1, where this sup runs over all
quantum probability distributions Qmax constructed
with the maximally entangled state in any dimen-
sion.

In particular, Theorem 6 shows the existence of quan-
tum probability distributions Q which can not be written
as a quantum probability distribution by using the max-
imally entangled state, even when the dimension of the
Hilbert spaces is not restricted (note the difference with
the case of quantum correlations matrices, [15]). On the
other hand, Theorem 6 suggests that the maximally en-
tangled state is a poor candidate to get large violations.
A similar statement holds in the context of tripartite cor-
relations (see [12] and the recent generalization to diago-
nal states in [4]). However, in [5] the authors have shown
the existence of a Bell inequality for which the maximally
entangled state in dimension n gives violations of order√
n

logn . Therefore, we can not expect to have condition b)
in Theorem 6 for every Bell inequality M .

However we showed that Theorem 6 is not longer true
if we restrict to Bell inequalities with positive coefficients
(in particular, games), because in that case we have:

Theorem 7 (Theorem 5.7, [9]). Let M = (Ma,b
x,y)x,y,a,b

be a Bell inequality with positive coefficients. Let’s as-
sume that there exists a state ρ acting on a n-dimensional
Hilbert space H and verifying |〈M,Qρ〉| = C, where Qρ
denotes any quantum probability distribution constructed
with the state ρ. Then, there exists k ≤ n such that

|〈M,Q|ψk〉〈ψk|〉| ≥
C

4 log n
,

where |ψk〉 = 1√
k

∑k
i=1 |ii〉 is the maximally entangled

state in dimension k.

It is interesting to point out that, as a consequence of
the Raz parallel repetition theorem [14] and the existence

of pseudo-telepathy games [3] one can deduce the exis-
tence of games which give unbounded violation of poly-
nomial order in the dimension (although the best known
estimates are very far from the order

√
n). This poly-

nomial order makes the logarithmic factor appearing in
Theorem 7 essentially irrelevant in our context.

The authors are partially supported by National Sci-
ence Foundation grant DMS-0901457.

[1] A. Acin, N. Gisin, L. Masanes, From Bells Theorem to
Secure Quantum Key Distribution, Phys. Rev. Lett. 97,
120405 (2006).

[2] J.S. Bell, On the Einstein-Poldolsky-Rosen paradox,
Physics, 1, 195 (1964).

[3] G. Brassard, A. Broadbent, A. Tapp, Quantum Pseudo-
Telepathy Foundations of Physics, Volume 35, Issue 11,
1877 - 1907 (2005).

[4] J. Briet, H. Buhrman, T. Lee, T. Vidick, Multiplayer
XOR games and quantum communication complexity
with clique-wise entanglement, arXiv:0911.4007

[5] H. Buhrman, G. Scarpa, R. de Wolf, Better Non-Local
Games from Hidden Matching, arXiv:1007.2359.

[6] J. Degorre, M. Kaplan, S. Laplante, J. Roland, The
communication complexity of non-signaling distributions,
Proc. 34th Int. Symp. of the MFCS, 270-281 (2009).

[7] A. Einstein, B. Podolsky, N. Rosen, Can Quantum-
Mechanical Description of Physical Reality Be Consid-
ered Complete?, Phys. Rev., 47, 777 (1935).

[8] N. Gisin, Hidden quantum nonlocality revealed by local
filters, Phys. Lett. A 210, 151 (1996).

[9] M. Junge, C. Palazuelos, Large violation of Bell inequal-
ities with low entanglement, arXiv:1007.3043.

[10] M. Junge, C. Palazuelos, D. Pérez-Garćıa, I. Villanueva
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