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motivation

® traditional fault-tolerance is not enough to reallistically
fight decoherence

® topological alternatives (Kitaev):
e topological quantum computing (TQC)
® self-protected by energy gap
® immune to small local distortion
e topological codes (TC)
® geometrically local, active error correction
® error threshold for large size

® both are anyon-based: exotic statistics in 2D



motivation

® two problems addressed here:

® TQC:the anyons that are easier to get have no
computational power

® TC:there exist extremely local TCs (2-local
measurements in 2D), but no way to compute

® 3 solution / new tool:

® twists = use anyon symmetries to increase
computational power



introduction

e why 2D?
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® statistics beyond bosons and fermions

® topological interaction
® appear in systems with topological order (TO) (Wen '89):

® gapped, ground state degeneracy depends on topology



introduction

® abelian charge: given charge of constituents, total charge
is known

® topological charge can be non=-abelian
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introduction

® TQC (Kitaev 03, Freedman et al *03)

encode in fusion channels

compute = braid measure = fuse
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introduction

® abelian anyons have no computational power

® twists offer a way to recover non-abelian behavior!




introduction

® quantum error correcting codes protect quantum
information using redundancy

® typically this involves encoding in a subspace
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introduction

® the code subspace can be defined in terms of commuting
observables: check operators (CO)
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® errors typically change CO values — allows to keep
track of errors

CO measurement — error syndrome —

— compute most probable error



introduction

® topological codes (Kitaev ‘97)
® geometrically local check operators = easy to measure

® global undetectable errors = hard to happen

undetectable
error




introduction

® # encoded qubits depends on topology (homology)
® flexible: many lattices allowed, transversal gates possible
® Dboundaries:planar geometries
® topological quantum memory (Dennis et al ‘02):
® measure COs repeatedly
® under a noise threshold, storage time exp in size
® ideal error correction amounts to compute free energy
¢ code deformation:

® change topology over time: initialize, compute, measure



introduction

® subsystem codes (Kribs et al ’05) can also improve locality

® only a subsystem of the code subspace is used

® check operators need not be measured directly —
measurements potentially more local (Poulin *05)
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introduction

e topological subsystem color codes (TSCC)
(Bombin '09)

® “doubly local”: topology + subsystem

® error syndrome recovery needs 2-local
measurements!




introduction

® [C andTO are closely related for subspace codes

Topological codes VS  Topological order

Check operators <  Hamiltonian terms
Code subspace <  Ground subspace
Error syndrome < Excitation configuration

® T[SCCGCs also have an anyonic picture for error syndromes



introduction

® T[SCCs do not allow boundaries
® no natural planar codes
® code deformation becomes unpractical

® with twists

® we can build planar TSCCs

® whole Clifford group by code deformation!




twists

® ingredients of an anyon model:
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twists

® ex.: Ising anyons

® topological charges ‘ {1, 0, ¥}

® fusion rules @

oxo=1+4+1, o XY = o, Y x P =1.
® the total charge of two distant o-s is 1 or :

® if far appart, global qubit

® fusion space:2n o-s — n qubits



twists

N
® braidingrules: @ @

)
® we can describe braiding up to a phase with a

Majorana operator per o

® Majorana operators are self-adjoint ¢; with
CjCk—|—Cij — 2531@
® total charge of j-th and j+1-th o-s: @
—1CjCjt1
® braidingg Cj — Cjt1 4 ¢ J/
Ciji+1 — —Cy / ?KV

® not universal, but we can use distillation (Bravyi '06)




twists

® anyon symmetry: charge permutation producing an
equivalent anyon model

q — m(q)

® imagine ‘cutting’ the anyons’ 2D world and gluing it again
up to a symmetry
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twists

® across the cut, charges change:

X

q0 — @ 7(q)

X

® topologically, the cut location is unphysical.

® endpoints are meaningful: under monodromy they
permute charges — twists




twists

® ex.:quantum double of Z; (toric code)

e charges: {1,e,m, ¢}

® fusion: € X M = € e X €eE=Mm m X e ==¢€
exe=mxm=eXe=1

® braidingg e,m — bosons e — fermion
\ f
)/:_ |, 1#a#Fd #1
qr ™4 q] \!

® nontrivial symmetry: € <— M




twists

® twists are sinks/sources for fermions:
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® vacuum to vacuum processes...
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® _lead to topological degeneracy:
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twists

® toric code (Kitaev '97,Wen ‘03):
® qubits form a square lattice

® 4-local check operators at plaquettes

® Hamiltonian version: H = — E Ck

® excitations live at plaquettes k



twists

® string operators create/destroy excitations at their
endpoints

® two types of strings/excitations: e (light) and m (dark)



twists

® twists amount to dislocations

® twists can be locally created in PAIRS only



twists

® no twists (or even number) — 4 possible charges
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® a twist (or an odd number) — 2 possible charges
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twists

® non-abelian fusion rules!

O-‘:XO-:::l_'_6 (7:-><(7—::€—|—m
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® we recover Ising rules:

o Xopr =1+¢€ O X €=0 exe=1



twists

® all closed string ops can be expressed in terms of a set of
open string ops — Majorana operators

i C2 C3
/x,{x,/x) Cjck+ckcj:25jk

® braiding is also Ising-like!
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twists

toric code m Ising anyons
abelian non-abelian




TSCC

® the original TSCCs come from 3-valent lattices with
3-colorable faces (red, green, blue)

® string operators have a color

® commutation relations of string ops relates them to an
anyon model with three nontrivial charges




TSCC

® fusion rules as in toric code
r X g=>D ocXb=r bxr=g¢g
rxr=gxg=bxb=1
® braiding of different charges as in toric code
® the difference: three fermionic charges
® any permutation of the colors is a symmetry!

® twists are labeled by the elements of S;
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TSCC

® faces with an odd number of links brake 3-colorability
® these are twists: two colors are exchanged

® a red twist exchanges green and blue, and so on




TSCC

® to the i-th twist we attach a string yi...

r
71,3

e ..and get self-adjoint string ops ki
‘““colored” Majorana ops

kf — 1 and, for 2 %j,
kik; = { kjki if ¢; = (4(¢j),

—k;k; otherwise.



TSCC

® braiding changes the color of twists
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® transforming as follows the colored Majorana ops
(Ci is the color of the i-th twist)

—kj if C; = Cj4+1,
k’j — /fj_|_1, k?j—|-1 — Z.]‘fjk'j—kl if Cj = C— (Cj—|—1)7
—]Cjkj_H otherwise.



TSCC

® for twists of the same color, we are back to Ising anyons
® encoding: | qubit = 4 twists of the same color

® we get all single qubit Clifford gates (Bravyi *06)

(kjkjp1kjrokjiz) = —1

— —ikjkj+1 '.‘



TSCC

® to get the whole Clifford group, we only need to
implement an entangling gate

® but for two groups of twists of different color:
C C

A A A A A U=
X1 — X1 Zl — XQZl — —
XQ — X2 ZAQ — X]_ZAQ — )
e and we can always flip the C  ——
color of a group:




TSCC

TSCC + twists +

+ code deformation =
Clifford gates




conclusions & questions

® anyon symmetries allow to introduce twists

® twists make anyon models and topological codes
computationally more powerful (but how much?)

® toric codes:
® twists mimic Ising anyons
® topological subsystem color codes:
e (lifford operations by code deformation

® other/general anyon models!?
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