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WHY?

• Motivation: Can we build a convincing complexity theoretic 
argument that quantum computers are not classically simulable? 
Can we do it with non-universal gate sets?

• Because I hate classical CS theory so much that I want to crush 
it with its own tools ..

• Because I love experimentalists and quantum computers are 
hard to build.
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Given n bit string, w, the circuit Cw is 
uniformly generated (in poly n time). The 
resulting output distribution is Pw. UZ is Z-
diagonal.

IQP sampling:
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IQP is hard theorem: If the 
output of uniform (poly-time/size) IQP 
circuits could be weakly classically 
efficiently simulated to within 41% 
(1≤c<21/2) multiplicative error, then the 
Polynomial Hierarchy would collapse 
to within it’s 3rd level.

IQP is easy theorem: If the 
output of uniform (poly-time/size) IQP 
circuits is restricted to O(log n) may 
be sampled (without approximation) 
by a classical randomized process that 
runs in time O(poly n).

Given n bit string, w, the circuit Cw is 
uniformly generated (in poly n time). The 
resulting output distribution is Pw. UZ is Z-
diagonal.

UZ is a circuit with O(poly n) Z, 
CZ, ei(π/8) gates. 

IQP sampling:
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• Not really, there is a really big problem 
with this theorem, it isn’t clear that a 
quantum computer can simulate an IQP 
circuit to within a constant multiplicative 
error!!!!

• What is simulation?

• Ultimately we are determining the cost 
of:

• Strong simulation: explicitly calculating 
any probability in Pw and its marginals. 
[Terhal and DiVincenzo ’02: Strong simulation of 
constant depth quantum circuits results in a 
collapse of the PH. (quant-ph/0205133]

• Weak simulation: approximately 
sample from Pw with Rw. [Multiplicative 
simulation results : us and Aaronson and Arkhipov 
’10]

• Strong implies weak.

SO, ARE WE DONE?

1

c
prob[Pw = x] ≤ prob[Rw = x] ≤ c prob[Pw = x]

Weak multiplicative simulation:

∑

x

|prob[Pw = x]− prob[Rw = x]| ≤ ε

Weak additive simulation, eg:

✓

IQP is hard theorem: If the 
output of uniform (poly-time/size) IQP 
circuits could be weakly classically 
efficiently simulated to within 41% 
(1≤c<21/2) multiplicative error, then the 
Polynomial Hierarchy would collapse 
to within it’s 3rd level.
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A&A AND ADDITIVE ERRORS
• If BOSONSAMPLING can be classically 

simulated in polytime with multiplicative 
error then PH collapses. [Aaronson and 
Arkhipov QIP ’10, arXiv:1011.3245]

• If BOSONSAMPLING can be classically 
simulated with additive error in polytime 
then the PH collapses - so long as:
• The Permanent-of-Gaussians 

conjecture is true, and 
• The Permanent anti-concentration 

conjecture is true.
• Argument relies heavily on the use of #P-

complete counting problems with a 
natural relationship to Bosonic systems.

• Does not hold (we think!) for decision 
languages based on post-selection.
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MUA SLIDE (SLEEP TIME?)

NP

PBPPBQP

postBPP

PH 
(Polynomial Hierarchy)

• Aaronson ’04: postBQP=PP 

(=postIQP)

• Toda’s Theorem ’91: PH⊆ PPP=P#P

• Han et al ’97: 
postBPP (BPPpath)⊆BPPNP⊆PH3

• If postIQP (or postBQP) = postBPP  
then PpostBPP ⊆ PBPPNP ⊆ BPPNP.

PPP=P#P=PpostBQP 

(=PpostIQP)

BPPNP⊆PH3

PH =
⋃

k

∆k, k → ∞

∆1 = P,∆k+1 = PN∆k
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• Toda’s Theorem ’91: PH⊆ PPP=P#P

• Han et al ’97: 
postBPP (BPPpath)⊆BPPNP⊆PH3

• If postIQP (or postBQP) = postBPP  
then PpostBPP ⊆ PBPPNP ⊆ BPPNP.

MUA SLIDE (SLEEP TIME?)

Friday, 14 January 2011



POSTIQP
Definition (postIQP): 

A language L is in the class postIQP (resp. postBQP 
or postBPP) iff there is an error tolerance 0 < ε < 
1/2 and a uniform family {Cw } of post-selected IQP 
(resp. quantum or randomised classical) circuits with a 
specified single line output register Ow (for the L-
membership decision problem) and a specified 
(generally O(poly(n))-line) post-selection register 
Pw such that: 

(i) if w ∈ L then prob[Ow = 1|Pw = 00 . . . 0] ≥ 1−ε 
and 
(ii) if w ∉ L then prob[Ow = 0|Pw = 00 . . . 0] ≥ 1−ε.

H H {0, 1}|0〉
H H|0〉

H H|0〉
H H|0〉

H H|0〉

UZ

〈0|

〈0|

Ow 

}Pw 

prob(Ow = x|Pw = 00...0) =
prob(Ow = x & Pw = 00...0)

prob(Pw = 00...0)
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Which satisfies the following condition:

From this you can show C’w  will decide L 

with bounded error if 1≤c<21/2.  ⧠

Proof sketch:
Given L ∈ postIQP, then there is a uniform family of post-
selected circuits Cw that can decide the language with the 
following error bounds:

(i) if w ∈ L then S(1) = prob[Ow = 1|Pw = 00 . . . 0] ≥ 1+δ  

(ii) if w ∉ L then S(0) = prob[Ow = 0|Pw = 00 . . . 0] ≥ 1+δ

for, 0< δ ≤ 1/2.

Assumption: there is a uniform family of classical 
(polytime) randomized circuits C’w that fulfill the 
multiplicative error criteria for :

and define the post-selected success probability:

IQP is hard theorem: If the output probability distributions 
generated by uniform families of IQP circuits could be weakly classically 
simulated to within multiplicative error 1≤ c <21/2 then postBPP = PP.

prob(Ow = x|Pw = 00...0) =
prob(Ow = x & Pw = 00...0)

prob(Pw = 00...0)

H H {0, 1}|0〉
H H|0〉

H H|0〉
H H|0〉

H H|0〉

U
〈0|

〈0|

Ow 

}Pw 

S′
w(x) =

prob(O′
w = x & P ′

w = 00...0)

prob(P ′
w = 00...0)

1

c2
Sw(x) ≤ S′

w(x) ≤ c2Sw(x)

1

c
prob[Yw = y] ≤ prob[Y ′

w = y] ≤ c prob[Yw = y]
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POSTIQP = PP

|0〉 H V

HU 〈 0 |

|0〉 H H {0, 1}

VHaU

Proof by construction using postBQP 
=PP:

• Take any circuit in BQP expressed in 
terms of the following universal gate set: 
H, Z, CZ, ei(π/8)Z.

• Only need to “remove” intermediate H’s 
to make a circuit in IQP.

• “Hadamard gadget” does this.
• As there are at most O(poly n) 

Hadamards then we will only ever add 
O(poly n) new qubits.
⧠
Note: An alternate proof can be used to 
show that the subset of IQP circuits for 
which this holds is inside QNC0. 
- The same proof shows that this holds 
for n.n. interactions in 2d.

U = UzH
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WHY IQP? (PHYSICSISH)
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• The math is really easy.

Friday, 14 January 2011



WHY IQP? (PHYSICSISH)

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

H H|0〉
H H|0〉

H H|0〉
H H|0〉

H H|0〉

UZ

• The math is really easy.
• It has really interesting physical 

properties for implementation:

Friday, 14 January 2011



WHY IQP? (PHYSICSISH)

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

H H|0〉
H H|0〉

H H|0〉
H H|0〉

H H|0〉

UZ

• The math is really easy.
• It has really interesting physical 

properties for implementation:
• Implemented by non-adaptive 

graph state computation.

Friday, 14 January 2011



WHY IQP? (PHYSICSISH)

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

H H|0〉
H H|0〉

H H|0〉
H H|0〉

H H|0〉

UZ

• The math is really easy.
• It has really interesting physical 

properties for implementation:
• Implemented by non-adaptive 

graph state computation.
• In some solid-state systems 

evolution speeds are biased.

Friday, 14 January 2011



WHY IQP? (PHYSICSISH)

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

H H|0〉
H H|0〉

H H|0〉
H H|0〉

H H|0〉

UZ

• The math is really easy.
• It has really interesting physical 

properties for implementation:
• Implemented by non-adaptive 

graph state computation.
• In some solid-state systems 

evolution speeds are biased.
• IQP circuits have better 

thresholds in biased noise models 
tailored to superconducting qubit 
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properties for implementation:
• Implemented by non-adaptive 

graph state computation.
• In some solid-state systems 

evolution speeds are biased.
• IQP circuits have better 

thresholds in biased noise models 
tailored to superconducting qubit 
architectures. [Aliferis et al 09] 

• Quantum simulations
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WHY IQP? (CSISH)
IQP is easy theorem: If the output of uniform (poly-time/size) IQP 
circuits is restricted to O(log n) may be sampled (without approximation) 
by a classical randomized process that runs in time O(poly n).
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O(log n) qubits
A 

• The math is really easy.
• This is certainly not true for BQP, 

QNC, QNC0f otherwise factoring 
is in BPP!

• We can use classical simulations 
to randomly verify outcomes.
• Thus we might be able to 

construct tests to verify the 
success of experiments.

O(poly n) qubits
B 
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Algorithm:
1.Choose random bit string y0.
2.Calculate:

3.Strongly simulate remaining 
operations on A - possible as 
now only O(log n) qubits.

4.Repeat.

WHY IQP? (CSISH)
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IQP is easy theorem: If the output of uniform (poly-time/size) IQP 
circuits is restricted to O(log n) may be sampled (without approximation) 
by a classical randomized process that runs in time O(poly n).

|φy0〉 =
1√
2M

∑

x

eif(x,y0)|x〉

A 
O(log n) qubits
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WHY IQP? (CSISH+)
TM(x, y) =

∑

X⊆E

(x− 1)ρM(E)−ρM(X).(y − 1)|X|−ρM(X)

Friday, 14 January 2011



WHY IQP? (CSISH+)
• Exact evaluation of Tutte polynomials is 

#P-hard. 
[Jaeger, Vertigan, Welsh 90]

TM(x, y) =
∑

X⊆E

(x− 1)ρM(E)−ρM(X).(y − 1)|X|−ρM(X)

Friday, 14 January 2011



WHY IQP? (CSISH+)
• Exact evaluation of Tutte polynomials is 

#P-hard. 
[Jaeger, Vertigan, Welsh 90]

• If (x-1)(y-1)=q=2 an FPRAS exists for 
y>1. [Jerrum and Sinclair 93]

TM(x, y) =
∑

X⊆E

(x− 1)ρM(E)−ρM(X).(y − 1)|X|−ρM(X)

Friday, 14 January 2011



WHY IQP? (CSISH+)
• Exact evaluation of Tutte polynomials is 

#P-hard. 
[Jaeger, Vertigan, Welsh 90]

• If (x-1)(y-1)=q=2 an FPRAS exists for 
y>1. [Jerrum and Sinclair 93]

• Additive approximations to Jones 
polynomials are BQP-complete. 
[Freedman, Larsen, Wang 01 and Aharanov, Jones, 
Landau 05]

TM(x, y) =
∑

X⊆E

(x− 1)ρM(E)−ρM(X).(y − 1)|X|−ρM(X)

Friday, 14 January 2011



WHY IQP? (CSISH+)
• Exact evaluation of Tutte polynomials is 

#P-hard. 
[Jaeger, Vertigan, Welsh 90]

• If (x-1)(y-1)=q=2 an FPRAS exists for 
y>1. [Jerrum and Sinclair 93]

• Additive approximations to Jones 
polynomials are BQP-complete. 
[Freedman, Larsen, Wang 01 and Aharanov, Jones, 
Landau 05]

• Additive approximations of the Potts 
model is BQP-hard. 
[Aharanov et al 07]

TM(x, y) =
∑

X⊆E

(x− 1)ρM(E)−ρM(X).(y − 1)|X|−ρM(X)

Friday, 14 January 2011



WHY IQP? (CSISH+)
• Exact evaluation of Tutte polynomials is 

#P-hard. 
[Jaeger, Vertigan, Welsh 90]

• If (x-1)(y-1)=q=2 an FPRAS exists for 
y>1. [Jerrum and Sinclair 93]

• Additive approximations to Jones 
polynomials are BQP-complete. 
[Freedman, Larsen, Wang 01 and Aharanov, Jones, 
Landau 05]

• Additive approximations of the Potts 
model is BQP-hard. 
[Aharanov et al 07]

• Multiplicative approximations to the 2-
state Potts model is #P-hard for q ≥ 4 
and x,y<0 (except x,y=-1). 
[Kuperberg 10]

TM(x, y) =
∑

X⊆E

(x− 1)ρM(E)−ρM(X).(y − 1)|X|−ρM(X)

Friday, 14 January 2011



WHY IQP? (CSISH+)
• Exact evaluation of Tutte polynomials is 

#P-hard. 
[Jaeger, Vertigan, Welsh 90]

• If (x-1)(y-1)=q=2 an FPRAS exists for 
y>1. [Jerrum and Sinclair 93]

• Additive approximations to Jones 
polynomials are BQP-complete. 
[Freedman, Larsen, Wang 01 and Aharanov, Jones, 
Landau 05]

• Additive approximations of the Potts 
model is BQP-hard. 
[Aharanov et al 07]

• Multiplicative approximations to the 2-
state Potts model is #P-hard for q ≥ 4 
and x,y<0 (except x,y=-1). 
[Kuperberg 10]

• Beginnings of a complete 
characterization of the rational Tutte 
plane. [Goldberg, Jerrum since 08]

TM(x, y) =
∑

X⊆E

(x− 1)ρM(E)−ρM(X).(y − 1)|X|−ρM(X)

Friday, 14 January 2011



WHY IQP? (CSISH+)
• Exact evaluation of Tutte polynomials is 

#P-hard. 
[Jaeger, Vertigan, Welsh 90]

• If (x-1)(y-1)=q=2 an FPRAS exists for 
y>1. [Jerrum and Sinclair 93]

• Additive approximations to Jones 
polynomials are BQP-complete. 
[Freedman, Larsen, Wang 01 and Aharanov, Jones, 
Landau 05]

• Additive approximations of the Potts 
model is BQP-hard. 
[Aharanov et al 07]

• Multiplicative approximations to the 2-
state Potts model is #P-hard for q ≥ 4 
and x,y<0 (except x,y=-1). 
[Kuperberg 10]

• Beginnings of a complete 
characterization of the rational Tutte 
plane. [Goldberg, Jerrum since 08]

TM(x, y) =
∑

X⊆E

(x− 1)ρM(E)−ρM(X).(y − 1)|X|−ρM(X)

Strong simulation of constant-weight 
IQP distributions is equivalent to 
evaluating the 2-state Potts model at 
x=-i tan(ϴ), y=eiϴ. [Shepherd 10]
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WHAT IS LEFT TO DO?
• Additive version of the IQP is hard theorem! 

• Can the relationship between binary matroids and non-universal gate sets 
be used to enlarge the set of Tutte polynomials that do not have an 
FPRAS?

• Can any form of error protection be performed in IQP?

• Can we use the these results to design experiments that aren’t classically 
simulable?

• Is BPPIQP more powerful than BPP? Can it do anything interesting?

• Can we find anything simpler than IQP that probably can’t be classically 
simulated?

• Look at Aaronson and Arkhipov’s list of open problems in arXiv:011.3245 
and try to answer them!!!
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WHERE IS IQP?

SampBQP

QNC

QNC0f = QMNC0

QNC0 IQP

Classical random 
polytime circuits.

Circuits covered by the 
“IQP is hard theorem”

Efficient factoring
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