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The Quantum 2-SAT (Q-2-SAT) problem is the natural generalization of the classical 2-SAT prob-
lem. It is first studied by S. Bravyi in [1], and shown to be efficiently solvable on a classical com-
puter. In the Quantum 2-SAT problem, a set of projections {Πij} is given for 1 ≤ i, j ≤ n. Each
projection Πij acts on the i-th and j-th qubit. The question is whether there is a quantum state |ψ⟩
of n qubits such that, for all projections Πij , Πij |ψ⟩ = 0. If such a |ψ⟩ exists, we call it a solution
of the Quantum 2-SAT problem; and generally, the solutions constitute a subspace of the n-qubit
Hilbert space. Both a single solution and the entire solution space of the Quantum 2-SAT problem
are the subject of this investigation.

Before stating our results, let us mention that the Quantum 2-SAT problem is closely related to
the so called 2-body frustration-free Hamiltonians in physicists’ language. A local Hamiltonian
H =

∑
Hj is called frustration-free if the ground states of H also minimize the energy of each

term Hj . It is easy to see that a Quantum 2-SAT problem {Πij} has a solution if and only if the
Hamiltonian H =

∑
Πij is frustration-free. Moreover, any results obtained in one language can be

easily translated in the other.
We prove several results listed below about the solutions of Quantum 2-SAT problem and will

discuss them one by one.

S1. There is always a simple solution which is the product of single- or two-qubit states.

S2. The entire solutions space is spanned by tree tensor network states of the same tree structure.

S3. Counting the dimension of the solution space is #P-complete.

Statement S1 tells us the existence of a simple solution. Any state of the product form of single- or
two-qubit states is obviously a unique solution of a Quantum 2-SAT problem, whose projections do
not even have any overlap. Statement S1 establishes that this kind of trivial solution is unavoidable
for a Quantum 2-SAT problem. It generalizes the construction of [1] where the solution found is
of a tree tensor network form. The proof of this statement makes uses of the SLOCC classification
of three-qubit entanglement [2]. Namely, any three-qubit genuine entanglement is SLOCC equiv-
alent to either GHZ or W state. The SLOCC equivalence plays a role here because two Quantum
2-SAT problems {Πij} and {L†

i ⊗ L†
jΠijLi ⊗ Lj} have the same solutions space up to local op-

eration
⊗

j Lj . The proof is therefore an example where the study of entanglement from quantum
information perspective has found an interesting application in many-body physics.
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Statement S1 has an important application in measurement-based quantum computing (MBQC) [3].
In MBQC, it is desired to find universal resource state which can occur in natural quantum systems.
Favorably, we want a nondegenerate two-body frustration-free Hamiltonian whose unique ground
state is a resource for MBQC. This aim has been achieved for spin-5/2 [4] and spin-3/2 [5] systems.
Whereas Statement S1 establishes a negative result for all spin-1/2 systems because of the existence
of product form solutions which have no power whatsoever of performing universal MBQC.

Input: a set of product
states that spans the solu-
tion space of the simplified
homogenous problem.

FIG. 1: The general structure of the ground space

Statement S2 characterizes the whole solution space. It extends the result of [1] for a single so-
lution to the whole solution space. The statement opens the door a complete understanding of the
Q-2-SAT solution space as in the classical case. The tree tensor networks [6–8] are obtained by
applying a series of isometries (from single qubit to two qubits) to a span of products of single-qubit
states. See Fig. 1 for an illustration where each triangle represents an isometry. The proof of State-
ment S2 relies on (1) a case study of the ranks of projections Πij , where the isometries come from
projections of rank 2, and (2) a graphical visualization and modification of the homogeneous case
(all projections are rank 1). The solutions space of the homogeneous case is always a span of prod-
ucts of single-qubit states, which constitute the input states in Fig. 1. In the graphical visualization,
we use solid and dashed edges to represent entangled and product constraints respectively depending
on whether |ψ⟩ in Πij = |ψ⟩⟨ψ| is entangled or not. Two sliding operations as in Figs. 2a and 2b are
used to simplify the graph structure without changing the ground space. This simplification leads to
graphs as in Fig. 2c which contains a dashed backbone with several solid tails attached to it.
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(c) An example of
interaction graph after
sliding simplifications

(d) The graph after the
solid-to-dashed
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FIG. 2: Simplification of the interaction graph

Statement S3 builds up on the previous statement. As counting the dimension of solution space is
at least as hard as its classical analog #2-SAT, we know that the problem is #P-hard [9]. However, in
the quantum case, even when we know the decision problem of Quantum 2-SAT is in P, it does not
easily follow that its counting version is in #P as there may not be any classical way of enumerating
all the solutions because of the possible arbitrary entanglement in a solution [10]. Statement S2
alleviates this point, but it is also important that we can enumerate a linearly independent set of
solutions in order to count the dimension correctly. This is done by a trick that replaces all the solid
tails in Fig. 2c by dashed edges, and reduces the problem to a much simpler case in Fig. 2d where
only product constraints are involved.
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In contrast to several related works that investigate random instances or generic cases [10–13],
all of our results are proved for the general case. The main conclusion is that the solution space of
Quantum 2-SAT is of a trivial structure. Both the frustration-freeness and low local dimension is
responsible for this phenomena. For frustrated two-body interactions of qubit system, there can be
non-trivial entanglement in the ground space (e.g., the Bacon-Shor code [14]), while for frustration-
free systems of higher local dimension, the AKLT state [15] has interesting entanglement that can
be universal for MBQC [16–18].

In sum, we provide several structural results of the solution space of Quantum 2-SAT problems.
In physicists’ language, they improve our understanding of quantum spin-1/2 systems, and hope-
fully, will provide ideas for the further research of quantum many-body systems. Related interesting
open problems includes the study of the solution space structure for Quantum 2-SAT where each
projections concerns a qubit and a qutrit, or even for Quantum 3-SAT. Whether these harder prob-
lems have a classically efficient describable solution is at the heart of the complexity of Quantum
2-SAT of qubit-qutrit pair and Quantum 3-SAT [1, 19, 20], and may have implications of whether
certain MBQC resource states exist.

This submission combines arXiv:1004.3787 and arXiv:1010.2480.
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